Thank you very much for your attention to our paper and careful reading its text.

“My question was simple: can you provide the wave amplitude equation for a quartet in the \((M \text{ mode}; \omega)\) space?“.

Theoretically it can be done. However, if we work with satellite data, only SSHA amplitudes are calculated more or less accurate. Following to Marchesiello et al., 2003\(^1\) who studied numerically mesoscale variability in the observed area, approximately 30% of kinetic energy corresponded to non-geostrophic motions. Therefore, we cannot find the wave amplitude equation because there is an unknown component of velocity. We explain this on p. 6, lines 14-18.

“I am surprised by the fact that my comment “The formulation of (modulational) resonance in an \((M \text{ mode}; \omega)\) space is not common” was a surprise to the authors.”

My apologizes for that, I probably did not understand your question at first. \((M\text{-mode}; \omega)\) space describes the evolution of a signal in a non-rectangular domain while \((\text{Fourier mode}; \omega)\) can only be applied to a rectangular domain. In other aspects, they are equivalent. It was shown for example, in Eremeev et al. (1992)\(^2\). We have added this information at lines 12-14, p. 6.

Also, we have changed the paper title and re-written Abstract.

Thank you very much for your criticism.
