Interactive comment on “Scale and space dependencies of soil Nitrogen variability” by Ana M. Tarquis et al.

Anonymous Referee #1

The manuscript explores the effect of the N fertilizer applied to a previous horticultural crop on the subsequent, unfertilized, wheat crop: the different response of weight and nitrogen content of the cereal. The differences shown by the wheat crop after the fertilization of the previous crop were already examined by several of the authors using the wavelet technique (Milne et al. 2010). The new aspect considered in this manuscript is the separation between the whole plant and the grain. The authors discussed some results like the different answer of grain weight compared to plant weight which might be due to physiological reasons, as for instance an upper threshold for grain yield, which could be similar to what Hawkesford (2014) indicates in his figures 2 and 3.

Thank you very much for your comments. At Milne et al. (2010) the work was centered in plant weight (wheat weight or PW) and in this manuscript we study plant weight (PW), plant Nitrogen content (PN), grain weight (wheat yield or GW) and grain Nitrogen content (GN).

Thank you for the reference of Hawkesford (2014) that we have included in this work.

Nevertheless the authors do not try to search for the reasons of the different behavior of the whole plant and the grain, but they show that the differences observed in their data, figures 3B and 3D of the manuscript, could be appreciated too with the multifractal analysis using the transect sampling.

We wanted to apply a multifractal analysis and the relative entropy to compare the behaviour of these four variables. However, we have included the relations between variables to improve the discussion in section 3.1:

The positive effect of increasing grain weight together with the additional benefit of increasing wheat N content with increasing N application is shown in Fig. 5A. Moreover, the same positive effect of N addition was observed, increasing wheat weight together with increasing wheat N content (Fig. 5B). Closer inspection of Fig. 4 reveals that the variability was much higher when the N application was higher.
Barraclough et al. (2010), in an experiment with N fertilization applied homogenously directly to the wheat crop, found that much of the additional N taken up by the plant (PN) is manifested in higher yield (GW), although we remark again that in this work, the N application was performed in the melon crop experiment, through fertigation on crop lines, and the wheat crop did not receive any N fertilization and was not irrigated.

This positive effect of N addition has been observed in numerous studies (Barraclough et al., 2010 and references therein). Several works determine the N optimum in the wheat crop, but in this study, the optimal N dose was not obtained because we sought to study the variability and the effect of the residual N resulting from N application to a previous melon crop months before.

Fig 5. Effect of N applied in previous melon crop on: A) grain weight and wheat N content; B) wheat weight and wheat N content; C) grain weight and grain N content.

The manuscript needs a major revision: the discussions and conclusions sections do not fully agree with the abstract, the discussion section requires a clarification, as well as other sections.

We have improved the discussion and conclusions sections as there were some mistakes.
Specific comments. There are several questions:

1. Given the dry period between November 2006-April 2007, seen in figure 2, and the high grain yields of figure 3, did the wheat plants receive any irrigation? In the affirmative case was the N contribution computed?

 No, the plants did not receive any irrigation. The yields were ranged between 3.7 and 7.5 t/ha following the Ministry of Agriculture statistics data.

2. The data of Table 1 require some additional explanation: if the 60% of the ETc is 251.8 mm why the irrigation volume in the W1 treatment was 344.1 mm?

 We have included the explication to this in the text. The rainfall was negligible, so the water applied was calculated as the ratio between the ETc of the previous week and the efficiency of the system, which considers the salt tolerance of the crop, the quality of the irrigation, soil texture and the homogeneity of the irrigation system (Rincón and Giménez (1989)), estimated as 0.81 under the study conditions. This result, called theoretical irrigation (irrigation calculated), was divided by the number of days to obtain the daily irrigation requirements. The real irrigation was the amount of water registered on the water meter (irrigation applied).

3. The explanations of Lines 10-18 of section 3.3, page 12 are not evident. The legend of the abscissa axes of figures 6, 7, and 8, should indicate the unit of the variable delta.

 The figures mentioned are now are 7, 8 and 9 plot. We have now improved the captions of these figures clarifying that “Δ” is the number of data points used and in the first figure (figure 7) has been translated into meters so the reader can follow the results better.
Fig 7. Entropy study: A) relative entropy, $E(\delta)$, of Nitrogen applied (Napp), B) increment of relative entropy, $\Delta E(\delta)$, of Napp. The equivalent distance to the number of data points (δ) are marked in $E(\delta)$.

Fig 8. Relative entropy ($E(\delta)$) respect to number of data points (δ) of: A) Grain Nitrogen content (GN), B) Grain Weight (GW), C) Wheat Nitrogen content (PN) and D) Wheat Weight (PW). Black lines represents $E(\delta)$ based on entropy dimension (D_1) of each variable.

Fig 9. Increment of relative entropy ($\Delta E(\delta)$) respect to number of data points (δ) of: A) Grain Nitrogen content (GN), B) Grain Weight (GW), C) Wheat Nitrogen content (PN) and D) Wheat Weight (PW). Black lines represents $\Delta E(\delta)$ based on entropy dimension (D_1) of each variable.

Also we have clarified more the text:

The increments of the $E(\delta)$ ($\Delta E(\delta)$), between two consecutives scales, calculated for Napp and the four variables are shown in Fig. 7B and Fig. 9, respectively. PN, GW and PW present a similar scaling trend, with a maximum structure revealed at scale $\delta=10$, corresponding to a distance of 5 m. This behaviour is the same found in Napp in the melon crop. In the case of GN, the maximum structure is found at $\delta=20$ (10 m), indicating that the interaction of other factors influences in this variation, and the Napp is not the main one.
All the values of $\Delta E(\delta)$ at the smallest scales, $\delta=5, 2$ and 1 (2.5, 1 and 0.5 m respectively), show an increase, giving the second maximum value for GN, GW and PW. This result suggests that at those scales, the variation is mainly due to the melon cropping lines, as the uptake of the applied nitrogen by this crop left a lower amount of available nitrogen for the wheat crop. In the case of PN, the second maximum was found at $\delta=20$ (10 m) followed by the one at the smallest scales, $\delta=2$ and 1 (1 and 0.5 m), as in the other variables.

4. The use of the English language must be thoroughly revised. It has been revised and a certificate of the translator is included.

Technical corrections:

Page 4, Line 14: The authors must indicate what UH mean. Done.

Page 4, Line 15: write 6,953 km2 and 3,192 km2. Done.

Page 5, Lines 12-13: the soil could belong to the xeralf suborder, and might have a petrocalcic horizon, but it does not necessarily mean that the soil can be classified as written in the manuscript. We are sorry; there was a mistake in the classification of the soil. We have corrected it.

Page 6, Line 1: if the plant density for wheat is written in plants m$^{-2}$ in page 7 line , why do not use similar units here: 4.44 plants m$^{-2}$? Well, the density to melon crop is 0.444 plans m$^{-2}$, so this unit is not used very much.

Page 6, Line 8: what does DAT stand for? We have removed DAT in all the paper.

Page 8, Line 18: write ‘The probability is’ instead of ‘We now perform a weighted sum over all segments that yield to’ Done.

Page 17, Line 1: insert the reference Soil Survey Staff 1999 Done.

Table 1: is it necessary? Table 1: the question might be irrelevant but why the numbers are not equal to those of Table 1 of Milne et al. (2010)? Table 1: if the Table is kept in the manuscript the third, fourth, sixth, and ninth columns could be deleted. The relevant information could be reduced to the ETo, kc, and rain depth
data. We have removed the indicated columns and have corrected the mistakes. The nine columns have not been removed because the referee 3 did not understand the N treatments, so the nine columns is necessary to clarify the N treatments.

Table 1. The treatments applied to the melon crop, total irrigation (applied irrigation, taking initial establishment irrigation into account, in the different treatments: 60% ETc (W1), 100% ETc (W2) and 140% ETc (W3) (15 to 104 DAT)) and applied nitrogen information. From Milne et al. (2010) with permission.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Irrigation (mm)</th>
<th>N applied (kg N ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>342.6</td>
<td>55.58</td>
</tr>
<tr>
<td>N1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>N2</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>W2</td>
<td></td>
<td>92.78</td>
</tr>
<tr>
<td>N0</td>
<td>552.9</td>
<td>0</td>
</tr>
<tr>
<td>N1</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>N2</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>W3</td>
<td></td>
<td>129.46</td>
</tr>
<tr>
<td>N0</td>
<td>755.9</td>
<td>0</td>
</tr>
<tr>
<td>N1</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>N2</td>
<td></td>
<td>300</td>
</tr>
</tbody>
</table>

Reference:

Included now in the manuscript.
Interactive comment on “Scale and space dependencies of soil Nitrogen variability” by Ana M. Tarquis et al.

Anonymous Referee #2

Overall, it is an interesting work that addresses scale-dependence of structure in series.

Thank you for your comment.

Three components of the work require better explanations:

1. The transect crosses areas with different treatments. This is reflected in responses to N shown in Fig. 3. The multifractal formalism does not allow for trends. How then the deterministic component of variation is reflected in multifractal parameters?

Figure 4 is showing the relation of nitrogen applied in melon crop and the values of the four variables study and of course that there is a relation. But to study the tendency in the transect for each variable we have to study Figure 3. For that we have done a statistical test to see if the slope of the data versus distance has a significant value or not.

At the end of section 2.4:

Finally, a statistical test was applied for each variable to determine if there was any significant trend with distance that would not allow the application of a straight multifractal analysis on the original data. The measure used was the coefficient of the slope of the regression line along the distance. This coefficient is derived using the least squares method and then compared to zero using the Student t-test. If the t value is less than a critical t value at the 95% level for the degrees of freedom, then the slope is considered to be zero.

At the end of section 3.1:
Before applying the multifractal analysis, a statistical test was applied to each variable to determine whether it presented a significant trend with distance. The results are shown in Table 3, where the estimated t was always lower than the critical t-value, implying that no spatial trend was significant.

We have included a new table:

Table 3. Statistical trend significance between the variables studied and distance in the transect (see Fig. 3): grain N content (GN), grain weight (GW), wheat N content (PN) and wheat weight (PW).

<table>
<thead>
<tr>
<th></th>
<th>GN</th>
<th>GW</th>
<th>PN</th>
<th>PW</th>
</tr>
</thead>
<tbody>
<tr>
<td>slope</td>
<td>0.21118</td>
<td>-4.34944</td>
<td>0.15982</td>
<td>1.70951</td>
</tr>
<tr>
<td>s.e.</td>
<td>0.11690</td>
<td>6.46473</td>
<td>0.11633</td>
<td>12.37794</td>
</tr>
<tr>
<td>R^2</td>
<td>0.02919</td>
<td>0.00286</td>
<td>0.01180</td>
<td>0.00012</td>
</tr>
<tr>
<td>t estimated</td>
<td>1.07253</td>
<td>0.67279</td>
<td>1.37376</td>
<td>0.13811</td>
</tr>
<tr>
<td>t value</td>
<td>1.97509</td>
<td>1.97509</td>
<td>1.97509</td>
<td>1.97509</td>
</tr>
<tr>
<td>significance</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

2. Distances of 5 and 10 m are mentioned as the distances at which structure is best revealed. Why the numbers are round? What is the method of finding these numbers? Do these numbers depend on the spatial increment of measurements?

The data were obtained each 0.5 m. The relation between number of data points and equivalent distance is added in Figure 7.
Fig 7. Entropy study: A) relative entropy, $E(\delta)$, of Nitrogen applied (Napp), B) increment of relative entropy, $\Delta E(\delta)$, of Napp. The equivalent distance to the number of data points (δ) are marked in $E(\delta)$.

3. Authors are talking about structure throughout the manuscript. But what is structure? How is it defined? It is important for future attempts to relate structure and function.

At the introduction we have added:

Geostatistical methods and, more recently, multifractal/wavelet techniques have been used to characterize the scaling and heterogeneity of soil properties, among other approaches coming from complexity science (de Bartolo et al., 2011). These methods study the structure of the property measured in the sense that compares the probability distribution at each scale and among scales.

The manuscript requires editing for English.

It has been revised and a certificate of the translator is included.

There are many small pesky errors. Here are examples from first two pages. Page 29 Change “can be seen as the result of” to “exhibit”. Done.
Change “Logsdom” to “Logsdon”. Done.
Change “on a” to “in” 20 Change “the scaling property” to “scaling properties”. Done.

How a surface site can be located near an aquifer? The irrigated agriculture is an activity very important in this area and principally is irrigated agriculture, which
is located near to groundwater sources. Mancha Occidental aquifer and Campo de Montiel Aquifer are the main sources of water in more than the half-irrigated lands (Domínguez and de Juan, 2008).

What are you trying to say with this characterization? We are describing the importance of water and nitrogen in this area with special characteristics in the soil and type of crops.

“Nitrogen” not capital. Done.
Interactive comment on “Scale and space dependencies of soil Nitrogen variability” by Ana M. Tarquis et al.

Anonymous Referee #3

The manuscript deals with the effect of residual soil N content, resulting from a previous experiment with melon, on several parameters in a wheat crop, including grain and plant N content and biomass. The main objective was to identify the structure of the variations in these parameters along a transect at different scales, for which the authors apply multifractal and entropy analyses. The topic of this work is interesting for a wide range of potential readers, and the analyses conducted, although previously used for other parameters, are novel when considering the crop parameters covered.

Thank you for your comments.

However, my recommendation on the manuscript is that it needs a major revision for a series of reasons:

- The introduction section is not well constructed, and contains some paragraphs (more precisely, P. 3, L. 12-20) that are a mere description of the experimental setup. This description should be part of the Material and Methods section and not the Introduction. Moreover, since several other papers with data from this experiment have been published already, their main findings should be included in this section (e.g., Castellanos et al., 2010; Milne et al., 2010).

We have changed the Introduction section leaving a paragraph describing the importance of water and nitrogen in the area.

- The Material and Methods section includes a detailed description of a previous experiment with melon plants that was conducted prior to the establishment of the wheat crop. Although knowing the history of the plots is necessary for the interpretation of the data, many of the details that the authors include are not relevant for the present work, since only parameters of wheat are discussed. For example, melon plant density (P.4, L. 14-15) or the number or rows and plants per row (P.4, L.17), or the details of melon plants (P. 4, L.12-13) are just irrelevant.
information. The information on the melon experiment should be revised and only the aspects that are important to understand the wheat data should be kept (fertilization, irrigation, and similar).

We have shorted the section on melon crop and wheat crop focusing only in the points necessary to understand the results.

Also, Figure 1 indicates the plot distribution for the different treatments in the melon experiment, when only the upper line of plots, which are the ones crossed by the transect, are needed in this paper. The figure should be revised to remove unnecessary information.

We have changed Figure 1.

- The results and discussion section is very limited (roughly, one page in length). In my opinion, the authors should do a better job describing and specially discussing the results and the implications of their findings.

We have improve the Discussion section remarking our findings.
For example, Milne et al. (2010) used the same data reported here but subjected to a different type of analysis. I might suggest comparing both analyses and discuss differences and similarities.

We have added in section 3.3:

The increments of the $E(\delta)$ ($\Delta E(\delta)$), between two consecutive scales, calculated for Napp and the four variables are shown in Fig. 7B and Fig. 9, respectively. PN, GW and PW present a similar scaling trend, with a maximum structure revealed at scale $\delta=10$, corresponding to a distance of 5 m. This behaviour is the same found in Napp in the melon crop. In the case of GN, the maximum structure is found at $\delta=20$ (10 m), indicating that the interaction of other factors influences in this variation, and the Napp is not the main one.

All the values of $\Delta E(\delta)$ at the smallest scales, $\delta=5$, 2 and 1 (2.5, 1 and 0.5 m respectively), show an increase, giving the second maximum value for GN, GW and PW. This result suggests that at those scales, the variation is mainly due to the melon cropping lines, as the uptake of the applied nitrogen by this crop left a lower amount of available nitrogen for the wheat crop. In the case of PN, the second maximum was found at $\delta=20$ (10 m) followed by the one at the smallest scales, $\delta=2$ and 1 (1 and 0.5 m), as in the other variables.

Comparing these results with those published by Milne et al. (2010), we found agreement on Napp as the main factor affecting PW change in structure and a noticeable influence at the smallest scales, highlighting the importance of crop melon space arrangement.

Also, the authors could discuss other aspects shown by the data, as why wheat grain weight does not increase substantially with N applications above approximately 150 kg/ha, while N content increases both in the plant and in the grain and plant biomass increases with increasing N.

We have added the following analysis in section 3.1:

Classical statistical analyses were performed on each of the variables to study their first statistical moments (Table 2). We could observe that the average and median present differences for each variable, in contrast to a normal distribution where both coincide. However, kurtosis and asymmetry do not present values higher than the unit in absolute terms. GW and PW present the highest kurtosis (0.82 and 0.78) and are negative. On the other hand, GN and PN have the highest asymmetry and are positive. The coefficient of variation is higher in variables related to nitrogen content (GN and PN) and lower in variables related to weight (GW and PW).

<table>
<thead>
<tr>
<th>Statistics</th>
<th>GN</th>
<th>GW</th>
<th>PN</th>
<th>PW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>59.01</td>
<td>5531.82</td>
<td>72.58</td>
<td>10365.20</td>
</tr>
</tbody>
</table>

Table 2. Descriptive Statistics of variables studied: grain N content (GN), grain weight (GW), wheat N content (PN) and wheat weight (PW).
Median | 54.84 | 5404.10 | 64.82 | 10016.34
Standard deviation | 28.64 | 1885.18 | 34.08 | 3604.59
Variance | 820.03 | 3553897.70 | 1161.28 | 12993051.45
Coefficient of variation | 0.49 | 0.34 | 0.47 | 0.35
Kurtosis | 0.09 | -0.82 | -0.12 | -0.78
Asymmetry | 0.80 | 0.26 | 0.76 | 0.30

Also we have included results and discussion of the relation between the variables:

The positive effect of increasing grain weight together with the additional benefit of increasing wheat N content with increasing N application is shown in Fig. 5A. Moreover, the same positive effect of N addition was observed, increasing wheat weight together with increasing wheat N content (Fig. 5B). Closer inspection of Fig. 4 reveals that the variability was much higher when the N application was higher. Barraclough et al. (2010), in an experiment with N fertilization applied homogenously directly to the wheat crop, found that much of the additional N taken up by the plant (PN) is manifested in higher yield (GW), although we remark again that in this work, the N application was performed in the melon crop experiment, through fertigation on crop lines, and the wheat crop did not receive any N fertilization and was not irrigated.

This positive effect of N addition has been observed in numerous studies (Barraclough et al., 2010 and references therein). Several works determine the N optimum in the wheat crop, but in this study, the optimal N dose was not obtained because we sought to study the variability and the effect of the residual N resulting from N application to a previous melon crop months before.

Fig 5. Effect of N applied in previous melon crop on: A) grain weight and wheat N content; B) wheat weight and wheat N content; C) grain weight and grain N content.
- The English of the text should be the subject of a deep revision. There are many mistakes and colloquial expressions that should be removed.

It has been revised and a certificate of the translator is included.

Some specific comments:

The text and expressions should be revised. For example, P.3, L.4 “This can give us an insight into the dominant processes”. This sentence seems unfinished (processes governing something?). As another example, in P.3, L. 5-11: the word “scale” is repeated too many times “to study scale effects localized in scale”.

We have reviewed the text to improve it.

In P. 3, L 20. What the authors did was to analyze the differences in some plant parameters that may be caused by residual N. However, residual soil N is not evaluated in this work, and the procedures used do not allow to do that. Therefore, this sentence should be deleted. Done.
-Do you, by any chance, have any numbers about N exports from the plots in the melon experiments? This could be very valuable information in order to understand the starting point of the wheat experiment.
We are really sorry but we haven’t.

-Revise the Soil Taxonomy classification of this soil (P.4, L.4). Done.
-Check the separators used for decimals and thousands (e.g., P.4, L.6 and 7: “7,9”, “2,2”). Done.

In the same line, “Cucumismelo” should be replaced by “Cucumis melo”. Done.

-Table 1 and figure 4. The N-application treatments in the melon experiment are only three, but in figure 4 there are 9 application rates. I guess that this is due to the addition of different irrigation amounts to the plots, which contain some amount of N. These amounts are not indicated in table 1 clearly, probably due to some mistake when preparing the table. I understand from Milne et al. (2010) that it should be the third column from the right in this table.
Table 1 has been changed.

Table 1. The treatments applied to the melon crop, total irrigation (applied irrigation, taking initial establishment irrigation into account, in the different treatments: 60% ETc (W1), 100% ETc (W2) and 140% ETc (W3) (15 to 104 DAT)) and applied nitrogen information. From Milne et al. (2010) with permission.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Irrigation (mm)</th>
<th>N applied (kg N ha⁻¹)</th>
<th>Irrigation water</th>
<th>Fertilizer</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation</td>
<td>Fertilizer</td>
<td>N0</td>
<td>342.6</td>
<td>55.58</td>
<td>0</td>
</tr>
<tr>
<td>W1</td>
<td>N1</td>
<td></td>
<td>55.58</td>
<td>150</td>
<td>205.58</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td></td>
<td>300</td>
<td>355.58</td>
<td></td>
</tr>
<tr>
<td>W2</td>
<td>N0</td>
<td>552.9</td>
<td>92.78</td>
<td>0</td>
<td>92.78</td>
</tr>
<tr>
<td></td>
<td>N1</td>
<td></td>
<td>92.78</td>
<td>150</td>
<td>242.78</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td></td>
<td>300</td>
<td>392.78</td>
<td></td>
</tr>
</tbody>
</table>
In figure 4, and considering the high variability that the treatments present, it might be necessary to calculate the confidence interval for the slope of the regression lines. It seems to me that in the Grain weight vs. N applied the 0 will be included in this interval, and thus no linear relation could be.

We have included the follow paragraph in section 3.1:

To study the relationships of GW, PW, GN and PN with the nitrogen applied during the melon crop season ($Napp$), we have plotted these variables without considering any spatial factors (Fig. 4). All of them show a tendency, as we expected, to increase in value as $Napp$ increases. The correlation coefficient (r) for the four variables range from 0.66 (GN case) up to 0.77 (PN case) demonstrating that there are statistically significant correlations with the N application in the melon crop experiment ($Napp$), as the wheat crop did not receive any N directly. For this reason, the relationship that we can observe could be considered linear, as the range we are studying is suboptimal and not as in other studies (e.g., Hawkesford, 2014). However, a quadratic relation can be fitted to all the variables with a similar R^2 (results not shown).

Overall, the manuscript needs a deep revision prior to be accepted for publication in Non-linear Processes in Geophysics.

We have worked hard to achieve the quality required by the journal.
Scale and space dependencies of soil nitrogen variability

Ana M. Tarquis¹,², María Teresa Castellanos³, Maria Carmen Cartagena³, Augusto Arce³, Francisco. Ribas⁴, María Jesús Cabello⁴, Juan López de Herrera¹ and Nigel R.A. Bird¹

¹CEIGRAM, Ciudad Universitaria sn, Madrid, 28040, Spain.- Technical University of Madrid.
³Dpto. Química y Tecnología de Alimentos- E.T.S.I. A.A.B - Technical University of Madrid, Spain.
⁴Centro de Investigación Agroambiental El Chaparrillo – Inst. Regional de Investigación y Desarrollo Agroforestal (IRIAF), Ciudad Real, Spain.

Correspondence to: Ana M. Tarquis (anamaria.tarquis@upm.es)

Abstract: In this study, we use multifractal analysis, through generalized dimensions \(D_q\) and the relative entropy \(E(\delta)\), to investigate the residual effects of fertigation treatments applied to a previous crop on wheat and grain biomass and nitrogen content. The wheat crop covered nine subplots from a previous experiment on melon responses to fertigation. Each subplot had previously received a different level of applied nitrogen \(N_{app}\), and the plants from the previous melon crop had already taken up part of it. Many factors affect these variables, causing them to vary at different scales and creating a non-uniform distribution along a transect. Correlations between the four variables and \(N_{app}\) showed high volatility, although the relationships between grain weight and wheat weight versus wheat nitrogen content presented a statistically significant logarithmic trend.
The D_q values were used to study the relation between scales, and $E(\delta)$ values and their increments between scales were used to identify the scale at which the variable had the maximum structure and were compared with the scaling behaviour of the Napp. $E(\delta)$ is particularly appropriate for this purpose because it does not require any prior assumptions regarding the structure of the data and is easy to calculate.

The four variables studied presented a weak multifractal character with a low variation in D_q values, although there was a distinction between variables related to nitrogen content and weight. On the other hand, the $E(\delta)$ and the increments in $E(\delta)$ help us to detect changes in the scaling behaviour of all the variables studied. In this respect, the results showed that the Napp through fertigation dominated the wheat and grain biomass response, as well as the nitrogen content of the whole plant; surprisingly, the grain nitrogen content did not show the same structure as Napp. At the same time, there was a noticeable structure variation in all the variables, except wheat nitrogen content, at smaller scales that could correspond to the previous cropping root arrangement due to uptake of the Napp.

Key words: relative entropy, multifractal analysis, sink crop
1. Introduction

Soils exhibit spatial variation operating over several scales. This observation points to “variability” as a key soil attribute that should be studied (Burrough et al., 1994). Soil variability has often been considered to consist of “functional” (explained) variations plus random fluctuations or noise (Goovaerts, 1997 and 1998). However, the distinction between these two components is scale-dependent because increasing the scale of observation almost always reveals structure in the noise (Logsdon et al., 2008). Geostatistical methods and, more recently, multifractal/wavelet techniques have been used to characterize the scaling and heterogeneity of soil properties, among other approaches coming from complexity science (de Bartolo et al., 2011). These methods study the structure of the property measured in the sense that compares the probability distribution at each scale and among scales.

Multifractal formalism, first proposed by Mandelbrot (1982), is suitable for variables with self-similar distribution on a spatial domain (Kravchenko et al., 2002). Multifractal analysis can provide insight into spatial variability of crop or soil parameters (Kravchenko et al., 2002 and 2003; Vereecken et al., 2007). This technique has been used to characterize the scaling properties of a variable measured along a transect as a mass distribution of a statistical measure on a spatial domain of the studied field (Zeleke and Si, 2004; López de Herrera, 2016). To do this, it divides the transect into a number of self-similar segments. It identifies the differences among the subsets by using a wide range of statistical moments.

Wavelets were developed in the 1980s for signal processing, and later introduced to soil science by Lark and Webster (1999). The wavelet transform decomposes a series; whether this be a time series (Whitcher, 1998; Percival and
Walden, 2000), or as in our case a series of measurements made along a transect; into components (wavelet coefficients) which describe local variation in the series at different scale (or frequency) intervals, giving up only some resolution in space (Lark et al., 2003). Wavelet coefficients can be used to estimate scale specific components of variation and correlation. This allows us to see which scales contribute most to signal variation, or to see at which scales signals are most correlated (Lark et al, 2004). This can give us an insight into the dominant processes.

An alternative to both of the above methods has been described recently. Relative entropy and increments in relative entropy has been applied in soil images (Bird et al., 2006) and in soil transect data (Tarquis et al., 2008) to study scale effects localized in scale and provide the information that is complementary to the information about scale dependencies found across a range of scales. We will use them in this work to describe the spatial scaling properties of a set of data measured on a common 80-m transect across a wheat crop field. This is an indirect way to study the N variability left in the soil by the previous crop.

Nitrogen fertilizer inputs for intensive production of irrigated crops can contribute to elevated NO$_3^-$ concentrations in groundwater when crop N use is insufficient to deplete the available soil N. The practice of drip fertigation has the potential to increase the efficiency of water and nitrogen use efficiency (Castellanos et al., 2010). However, a disadvantage associated with it is that the nitrogen travels outside the root zone (Thompson and Doerge, 1996). Other workers have investigated the residual effects of nitrogen (McCracken et al., 1989; Karlen et al., 1998; Ruffo et al., 2004; Bundy and Andraski, 2005). The accumulation and redistribution of nitrogen within the soil varies depending on management practices, soil characteristics and
precipitation, and these effects are likely to contribute to variations at different spatial
frequencies. None of the studies of which we are aware consider the effects of previous
treatments over a range of spatial frequencies, and given the particular processes
associated with fertigation, we wished to do so in this study.

The data discussed in this paper result from two consecutive experiments
performed near two hydrological units (UH) protected by the government of Castilla-La
Mancha concerning the protection of waters against pollution caused by nitrates from
agricultural sources. These two units, Mancha Occidental (U.H. 04.04, 6.953 km²) and
Campo de Montiel (U.H. 04.06, 3,192 km²), have been declared vulnerable zones to
nitrate pollution with high NO₃ contamination problems. In the first experiment, the
plots were used for melon crop experiments to optimize fertigation using different
levels of N, as reported in Castellanos et al. (2010). These treatments constituted a
known contribution to the variation of soil nitrogen at predominantly larger scales.
During melon crop development, a proportion of the nitrogen was taken up, adding a
second factor of variability that is also known at smaller scales. After the melons were
harvested, the second experiment with wheat was begun. Wheat was sown across the
plots and harvested in consecutive sections along the transect and biomass, and the N
uptake was measured. The wheat was used effectively as a nitrogen sink crop and
allowed us to evaluate the residual soil nitrogen.

In this study, we have analysed the transect data for nitrogen content and the
weight of the grain and of the whole plant of the wheat crop. First, correlations between
these four variables and the different nitrogen application doses in the previous crop
were estimated, without considering spatial structure. Then, multifractal and relative
entropy analyses were applied to investigate the structure among the scales. This work is the first application of both types of analysis to the same data set.

2. Materials and Methods

2.1. Field Experiment

Field trials were conducted in La Entresierra field station of Ciudad Real in the central region of Spain (3° 56’ W; 39° 0’ N; 640 m of altitude) during May 2006 to June 2007. The soil of the experimental site, classified as Petrocalcic Palexeralfs in the USDA system (Soil Survey Staff, 2010), presented very low vertical variability up to a depth of 60 cm, from which one finds a discontinuous and fragmented petrocalcic horizon. The soil was sandy-loam in texture, moderately basic (pH 7.9), with a medium level of organic matter (2.2%), rich in potassium (0.9-1.0 meq L-1, ammonium acetate) and with a medium level of phosphorous (16.4 to 19.4 ppm, Olsen) with ECw. 0.1-0.2 dS m-1.

The area is characterized by a continental Mediterranean climate, with widely fluctuating daily temperatures (for more details, see Castellanos et al., 2010).

During the three years prior to this experiment, the plots did not receive any organic or fertilizer amendments and were used to grow non-irrigated winter wheat (Triticum aestivum L.).

2.2. Melon Crop Experiment

In this experiment, a randomized complete block design was used, with three nitrogen treatments and three irrigations. The irrigation treatment was applied at the
main plot level, and N-rates were replicated in the subplots. Each treatment was replicated four times in subplots measuring between 7.5-16.5 m in width and 12 m in length. The subplot widths ranged in size for practical reasons. The plots were arranged on a four by nine grid (Fig. 1). Each subplot had five, seven or eleven rows of melons, according to its width (see Fig. 1).

Each crop row was drip irrigated from a line with emitters spaced at 0.5 m, which dripped water at a rate of 2 l h⁻¹. Initially, to facilitate crop establishment, all plots received 30 mm of water. The irrigation schedule was calculated from June 8 to September 6, with a single daily irrigation of 60% (W1), 100% (W2) or 140% (W3) of melon crop evapotranspiration (ETc) depending on the irrigation treatment. Crop evapotranspiration (ETc) was calculated daily following the FAO method (Doorenbos and Pruitt 1977) as follows:

\[ETc = Kc \times ETo \] (1)

where \(Kc \) is the crop coefficient, which was obtained in the same area for the melon crop in earlier years (Ribas et al. 1995), and \(ETo \) is the reference evapotranspiration calculated by the FAO Penman-Monteith method (Allen et al. 2002) using daily data from a meteorological station sited near the experimental field. The rainfall was negligible during the crop experiment, so the water applied was calculated as the ratio between the ETc of the previous week and the efficiency of the system, which considers the salt tolerance of the crop, the quality of the irrigation, the soil texture and the homogeneity of the irrigation system (Rincón and Giménez, 1989), estimated as 0.81 under the study conditions (more details in Castellanos et al., 2010). The irrigation calculated in this form was the theoretical irrigation and was divided by the number of days to obtain daily irrigation requirements. The total irrigation applied
was registered on the water meter. The ETo during the irrigation schedule was 572 mm, the ETc was 419 mm, and the total irrigation applied was 343, 553 and 756 mm for W1, W2 and W3, respectively (Table 1). The irrigation water quality was measured weakly through a chemical analysis to estimate the nitrogen content of the water (N_w) (Table 1).

The fertilizer treatments consisted of different N doses: 0 (N_0), 150 (N_1) and 300 (N_2) kg ha$^{-1}$. The N fertilizer was applied in the form of ammonium nitrate from June 9 to August 18, from a single pool at one end of the field where irrigation water was mixed with the respective doses of N (Table 1). The total amount of N applied was the sum of the N fertilizer and N in the irrigation water, so all the treatments appear in Table 1.

The plots were fertilized with 120 kg of P$_2$O$_5$ ha$^{-1}$ (phosphoric acid) for the season, added to the irrigation water and injected daily from June 8 to August 30.

Melons were harvested when there was a significant amount of ripe fruit in the field from 26 July to 7 September, with a total of seven harvests.

The duration of the melon experiment was from May 24 to September 7, and it is described more fully in Castellanos et al. (2010).

2.3. Wheat Crop Experiment

Winter wheat (cv. Soissons) was grown on the same experimental sites where the melon crop was before (Fig. 2). It was sown 20 December of 2006 in rows spaced 0.15 m apart at a population of 400 seeds m$^{-2}$. Post emergence herbicides were used to
control weeds. No fertilizer or organic amendments were used for the cereal crop. Wheat crop was harvested 6 June 2007.

At this time a transect was selected in the field that went through several plot treatments as showed in Fig. 1. Each 0.5 m a frame of 0.5 x 0.5 m² was placed on the soil and the wheat plants captured were harvested and placed in labelled samples. A total of 160 samples were collected traversing a length of 80 m.

Sub-samples of the dry plants and wheat grain were ground to a fine powder to determine the N content using the Kjeldahl method (Association of Official Analytical Chemists, 1990). The N uptake by the plant (PN) and by the grain (GN) was obtained as a product between N concentration and biomass (PW and GW, respectively). The resulted data is showed in Fig. 3A and 3C.

In each sample, the wheat grain was placed apart from the rest of the plant to obtain the dry weight of each sample separately. The grain dry weight (GW) and plant dry biomass were determined by oven drying at 80 °C to constant weight. The plant dry weight (PW) was the sum of the GW and plant biomass. The data are shown in Fig. 3B and 3D.

2.4. Correlations

A simple analysis, regardless of spatial position, were applied to the data collected. The correlation (r) and the determination coefficient (R²) between the nitrogen applied during the melon crop (Napp) and each variable (PW, GW, PN and GN) were estimated and plotted.
At the same time, the relations between nitrogen content and weight were studied for the grain (GW versus GN) and the whole plant (PW versus PN) as well as GW versus PN to compare with other studies performed in wheat crops.

Finally, a statistical test was applied for each variable to determine if there was any significant trend with distance that would not allow the application of a straight multifractal analysis on the original data. The measure used was the coefficient of the slope of the regression line along the distance. This coefficient is derived using the least squares method and then compared to zero using the Student t-test. If the t value is less than a critical t value at the 95% level for the degrees of freedom, then the slope is considered to be zero.

2.5. Multiscale analysis through Generalized Dimensions

The aim of a multifractal analysis (MFA) is to study how a normalized probability distribution of a variable (μ_i) varies with scale as it is one way to study the structure of a measure. In this sense, the density levels of these probabilities are evaluated through the behaviour of a range of statistical moments of the partition function ($\chi(q,\delta)$). Let’s consider a grid segment of length δ covering a part of transect, with total length L. The measure of the ith segment is defined $M_i(\delta)$. The probability is:

$$\mu_i(q,\delta) = \frac{M_i^q(\delta)}{N(\delta)} \sum_{j=1} M_j^q(\delta)$$

(2)

For a multifractal measure, $\chi(q,\delta)$ will have scaling properties (Evertsz and Mandelbrot, 1992), namely
\(\chi(q, \delta) \sim \delta^{\tau(q)} \) \hspace{1cm} (3)

Being \(\chi(q, \delta) = \sum_{j=1}^{N(\delta)} \mu_j^n(\delta) \) \hspace{1cm} (4)

where \(\tau(q) \) is a nonlinear function of \(q \) (Feder, 1989). For each \(q \), \(\tau(q) \) may be obtained as the slope of a log-log plot of \(\chi(q, \delta) \) against \(\delta \). A generalized dimension function \(D_q \) is then derived as (Hentschel and Procaccia, 1983):

\[D_q = \tau(q)/ (1-q) \] \hspace{1cm} (5)

for \(q \neq 1 \). The case \(D_1 \) is defined as the limit \(D_1 = \lim_{q \to 1} D_q \). This leads to the scaling relation of entropy given by:

\[S(\delta) = -\sum_{i=1}^{n(\delta)} \mu_i \ln(\mu_i) \sim D_1 \ln(\delta) \] \hspace{1cm} (6)

The dimension \(D_1 \), known as entropy dimension, can then be extracted from a plot of entropy against \(\ln(\delta) \).

2.6. Multiscale analysis through Relative Entropy

Given these definitions and the behaviour to expect in case of a multifractal measure, we are going to focus in the scaling properties of entropy as a tool to quantify the heterogeneity of coarse grained measure \(\mu_i(\delta) \), or signal, derived from the transect data as it has been applied previously to black and white soil thin sections (Bird et. al., 2006).
We consider a transect of length L for a bin size δ the entropy ($S(\delta)$) is defined by equation (6). We use here a relative entropy ($E(\delta)$) in order to establish what difference exists from the entropy of a uniform measure, given by

$$E(\delta) = \sum_i \mu_i(\delta) \ln \mu_i(\delta) - \ln \frac{\delta}{L}$$ \hspace{2cm} (7)$$

where the second term is the entropy of the uniform measure. Plotting this against the resolution of observation δ, then reveals how heterogeneity in the signal evolves with increasing resolution being another way to study the structure of the measure or variable (Tarquis et al., 2008). We may use this simple procedure to identify multiscale signals arising from the superposition of structure at different scales and assess the degree of this scale dependent structure.

Here we consider some special cases. When we increase the resolution by a factor of 2 we observe that

$$E(\delta/2) = E(\delta) + \sum_i \mu_i(p_i \ln p_i + q_i \ln q_i)$$ \hspace{2cm} (8)$$

where p and q control the distribution of the measure in the finer partition and $p + q = 1$. Then

$$\Delta E(\delta) = E(\delta/2) - E(\delta) = \sum_i \mu_i(p_i \ln p_i + q_i \ln q_i) + \ln 2$$ \hspace{2cm} (9)$$

If p and q are independent of i then

$$\Delta E(\delta) = (p_i \ln p_i + q_i \ln q_i) + \ln 2$$ \hspace{2cm} (10)$$

This increases as the difference between p and q increases and more structure is observed in the data at this scale. If $p = q = 0.5$, namely there is no structure revealed on increasing resolution then $\Delta E(\delta) = 0$.

Further if \(p \) and \(q \) are independent of \(\delta \) then we arrive at a binomial cascade.

This is a multifractal measure and relative entropy scales logarithmically as:

\[
E(\delta) = (D_q - 1) \ln(\delta/L)
\]

(11)

3. Results and Discussion

3.1. Correlations

Classical statistical analyses were performed on each of the variables to study their first statistical moments (Table 2). We could observe that the average and median present differences for each variable, in contrast to a normal distribution where both coincide. However, kurtosis and asymmetry do not present values higher than the unit in absolute terms. \(GW \) and \(PW \) present the highest kurtosis (0.82 and 0.78) and are negative. On the other hand, \(GN \) and \(PN \) have the highest asymmetry and are positive. The coefficient of variation is higher in variables related to nitrogen content (\(GN \) and \(PN \)) and lower in variables related to weight (\(GW \) and \(PW \)).

To study the relationships of \(GW, PW, GN \) and \(PN \) with the nitrogen applied during the melon crop season (\(N_{\text{app}} \)), we have plotted these variables without considering any spatial factors (Fig. 4). All of them show a tendency, as we expected, to increase in value as \(N_{\text{app}} \) increases. The correlation coefficient (\(r \)) for the four variables range from 0.66 (\(GN \) case) up to 0.77 (\(PN \) case) demonstrating that there are statistically significant correlations with the \(N \) application in the melon crop experiment (\(N_{\text{app}} \), as the wheat crop did not receive any \(N \) directly. For this reason, the relationship that we can observe could be considered linear, as the range we are studying is suboptimal and not as in other studies (e.g., Hawkesford, 2014). However, a quadratic relation can be fitted to all the variables with a similar \(R^2 \) (results not shown).
However, we can observe that at each of the Napp values, the variables show variability. This result is a consequence of a set of processes occurring from melon fertigation to wheat harvest, such as nitrogen uptake by the melon crop, organic soil nitrogen mineralization, nitrogen leaching, horizontal diffusion of soluble nitrogen forms and nitrogen uptake by the wheat crop (Milne et al., 2010).

The positive effect of increasing grain weight together with the additional benefit of increasing wheat N content with increasing N application is shown in Fig. 5A. Moreover, the same positive effect of N addition was observed, increasing wheat weight together with increasing wheat N content (Fig. 5B). Closer inspection of Fig. 4 reveals that the variability was much higher when the N application was higher.

Barraclough et al. (2010), in an experiment with N fertilization applied homogenously directly to the wheat crop, found that much of the additional N taken up by the plant (PN) is manifested in higher yield (GW), although we remark again that in this work, the N application was performed in the melon crop experiment, through fertigation on crop lines, and the wheat crop did not receive any N fertilization and was not irrigated.

This positive effect of N addition has been observed in numerous studies (Barraclough et al., 2010 and references therein). Several works determine the N optimum in the wheat crop, but in this study, the optimal N dose was not obtained because we sought to study the variability and the effect of the residual N resulting from N application to a previous melon crop months before.

Before applying the multifractal analysis, a statistical test was applied to each variable to determine whether it presented a significant trend with distance. The results are shown in Table 3, where the estimated t was always lower than the critical t-value, implying that no spatial trend was significant.
3.2. Generalized Dimensions

Multifractal analysis was applied to the four variables. In all cases, a \(\tau(q) \) function reflected a hierarchical structure from one scale to the other with values of \(q=1, \tau(1)=0 \), indicating the conservative character of the variables (Fig. 6A). Therefore, we estimated the \(D_q \) in an interval of \(q=\pm 4 \) (Fig. 6B). The results show a weak variation in the values near 1, highlighting the difficulty of characterizing the multiscale heterogeneity in this type of analysis. In this case, the scale dependency found across a range of scales is not strong enough to show a high variation in \(D_q \) versus \(q \), and \(\tau(q) \) presents an almost linear trend. There are several works on soil transect data that present similar results (Caniego et al., 2005; Zeleke and Si, 2006).

Calculating the difference of \(D_{-4} \) and \(D_4 \) can provide an estimate of the variation of \(D_q \) for each variable. A higher difference implies a stronger multifractal character. The variables related to nitrogen content (\(GN \) and \(PN \)) show a higher variation in \(D_q \) values (0.151 and 0.150, respectively) than the variables related to weight (0.088 for \(GW \) and 0.092 for \(PW \)), highlighting a different multifractal character of the two types of variables. In this sense, \(GW \) and \(PW \) behave very similarly, as do \(GN \) and \(PN \). This information is complementary to the descriptive statistics performed in section 3.1, in which the spatial factor was not considered.

3.3. Relative Entropy

To compare the spatial scaling behaviour of these four variables with the Napp behaviour, \(E(\delta) \) was calculated, and the results are shown in Fig. 7A and Fig. 8. The translation from the number of data points (\(\delta=1, 2, 5, 10, 20, 40, 80 \) and 160) to the
distance in metres is marked in Fig 7A. The trend in each case is not log-linear, as we would expect for a pure multifractal measure. In the case of Napp, the range of values reached -0.20 (Fig. 7A), and in the rest, they approach -0.06 (GW and PW) or -0.11 (GN and PN) (Fig. 8).

We have plotted each variable (Fig. 8) \(E(\delta) \) calculated at each \(\delta \) following equation [7] and based on \(D_1 \) estimated in the above section using equation [11]. At certain scales, both present the same value, but most of the scales show variations (Fig. 8). Comparing the straight line slopes (see Fig. 8), which derived from the \(D_1 \) values, higher and very similar values are found in GN and PN. On the other hand, GW and PW present lower values and are very similar to each other.

The increments of the \(E(\delta) \) (\(\Delta E(\delta) \)), between two consecutives scales, calculated for Napp and the four variables are shown in Fig. 7B and Fig. 9, respectively. PN, GW and PW present a similar scaling trend, with a maximum structure revealed at scale \(\delta=10 \), corresponding to a distance of 5 m. This behaviour is the same found in Napp in the melon crop. In the case of GN, the maximum structure is found at \(\delta=20 \) (10 m), indicating that the interaction of other factors influences in this variation, and the Napp is not the main one.

All the values of \(\Delta E(\delta) \) at the smallest scales, \(\delta=5, 2 \) and 1 (2.5, 1 and 0.5 m respectively), show an increase, giving the second maximum value for GN, GW and PW. This result suggests that at those scales, the variation is mainly due to the melon cropping lines, as the uptake of the applied nitrogen by this crop left a lower amount of available nitrogen for the wheat crop. In the case of PN, the second maximum was found at \(\delta=20 \) (10 m) followed by the one at the smallest scales, \(\delta=2 \) and 1 (1 and 0.5 m), as in the other variables.
Comparing these results with those published by Milne et al. (2010), we found agreement on Napp as the main factor affecting PW change in structure and a noticeable influence at the smallest scales, highlighting the importance of crop melon space arrangement.

4. Conclusions

Four variables, the biomass and nitrogen content of wheat and grain, have been studying on transect data selected from a set of experimental plots where different fertigation treatments were applied to a previous melon crop.

First, classical statistics were applied without considering the spatial arrangement to study these variables. None presented extreme values of kurtosis and asymmetry, but comparing the values showed a difference between variables related to nitrogen content and variables related to weight. In addition, the coefficient of variation were lower in the nitrogen-related variables.

Then, the relationships among the variables and with the nitrogen applied to the previous crop were studied. The positive effect of N addition to the melon experiment was observed through increased grain weight (GW), wheat N content (PN) and wheat weight (PW), but even these correlations present a high volatility, and it is not clear if a first- or second-order regression could fit better. However, GW versus PN and PW versus PN presented a clear logarithmic relation tending to a maximum.

Considering the spatial arrangement of the variables’ values, we have conducted a multifractal analysis on transect data as we checked that there was a non-significant trend along the transect. The Dq obtained indicates a non-strong multiscale structure in the four variables studied, but different strength was nonetheless observed between
variables related to nitrogen content (\(GN\) and \(PN\)) and variables related to weight (\(GW\) and \(PW\)). In this case, the generalized dimensions did not give us the relevant information we expected on multiscale heterogeneity but did discriminate between the two types of variables, as in the classical statistics.

A relative entropy analysis was used to identify local maxima within the data structure. Grain and plant weight (\(GW\) and \(PW\), respectively) present a maximum structure at a scale of 5 m that corresponds to Napp treatment, as well as wheat nitrogen content (\(PN\)). In contrast, for the grain nitrogen content (\(GN\)) the maximum structure is found at 10 m, revealing that Napp is not the main factor explaining its variation.

Therefore, relative entropy showed a distinction between variables related to nitrogen content that was not found using classical statistics or multifractal analysis.

The proposed approach provides information about scale dependencies related to factors that created spatial variability and is complementary to multiscale analysis and descriptive statistics.

Acknowledgements

This project has been partially supported by INIA-RTA04-111-C3 and by the Ministerio de Economía y Competitividad (MINECO) under Contract No. MTM2015-63914-P and No CICYT PCIN-2014-080.
References

Table 1. The treatments applied to the melon crop, total irrigation (applied irrigation, taking initial establishment irrigation into account, in the different treatments: 60% ETc (W1), 100% ETc (W2) and 140% ETc (W3) (15 to 104 DAT)) and applied nitrogen information. From Milne et al. (2010) with permission.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Irrigation (mm)</th>
<th>N applied (kg N ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Irrigation water</td>
<td>Fertilizer</td>
</tr>
<tr>
<td>W1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>342.6</td>
<td>0</td>
</tr>
<tr>
<td>N1</td>
<td>55.58</td>
<td>150</td>
</tr>
<tr>
<td>N2</td>
<td>300</td>
<td>355.58</td>
</tr>
<tr>
<td>W2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>552.9</td>
<td>0</td>
</tr>
<tr>
<td>N1</td>
<td>92.78</td>
<td>150</td>
</tr>
<tr>
<td>N2</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>W3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>755.9</td>
<td>0</td>
</tr>
<tr>
<td>N1</td>
<td>129.46</td>
<td>150</td>
</tr>
<tr>
<td>N2</td>
<td></td>
<td>300</td>
</tr>
</tbody>
</table>
Table 2. Descriptive Statistics of variables studied: grain N content (GN), grain weight (GW), wheat N content (PN) and wheat weight (PW).

<table>
<thead>
<tr>
<th>Statistics</th>
<th>GN</th>
<th>GW</th>
<th>PN</th>
<th>PW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>59.01</td>
<td>5531.82</td>
<td>72.58</td>
<td>10365.20</td>
</tr>
<tr>
<td>Median</td>
<td>54.84</td>
<td>5404.10</td>
<td>64.82</td>
<td>10016.34</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>28.64</td>
<td>1885.18</td>
<td>34.08</td>
<td>3604.59</td>
</tr>
<tr>
<td>Variance</td>
<td>820.03</td>
<td>3553897.70</td>
<td>1161.28</td>
<td>12993051.45</td>
</tr>
<tr>
<td>Coefficient of variation</td>
<td>0.49</td>
<td>0.34</td>
<td>0.47</td>
<td>0.35</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>0.09</td>
<td>-0.82</td>
<td>-0.12</td>
<td>-0.78</td>
</tr>
<tr>
<td>Asymmetry</td>
<td>0.80</td>
<td>0.26</td>
<td>0.76</td>
<td>0.30</td>
</tr>
</tbody>
</table>
Table 3. Statistical trend significance between the variables studied and distance in the transect (see Fig. 3): grain N content (GN), grain weight (GW), wheat N content (PN) and wheat weight (PW).

<table>
<thead>
<tr>
<th></th>
<th>GN</th>
<th>GW</th>
<th>PN</th>
<th>PW</th>
</tr>
</thead>
<tbody>
<tr>
<td>slope</td>
<td>0.21118</td>
<td>-4.34944</td>
<td>0.15982</td>
<td>1.70951</td>
</tr>
<tr>
<td>s.e.</td>
<td>0.11690</td>
<td>6.46473</td>
<td>0.11633</td>
<td>12.37794</td>
</tr>
<tr>
<td>R²</td>
<td>0.02919</td>
<td>0.00286</td>
<td>0.01180</td>
<td>0.00012</td>
</tr>
<tr>
<td>t estimated</td>
<td>1.07253</td>
<td>0.67279</td>
<td>1.37376</td>
<td>0.13811</td>
</tr>
<tr>
<td>t value</td>
<td>1.97509</td>
<td>1.97509</td>
<td>1.97509</td>
<td>1.97509</td>
</tr>
<tr>
<td>significance</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Fig 1. A croquis of the experimental melon crop layout. The nine subplots of the melon crop experiment through which the wheat transect ran are shown. The wheat transect is shown by the dark green line. The fertilizer levels are shown on the figure: N0, N1, N2 and represent 0, 150 and 300 kg N ha$^{-1}$ respectively. The three different irrigation levels are indicated by the colour of the subplot lines: light blue is W1, the light green W2, and the orange W3 corresponding to 60%, 100%, and 140% of the estimated crop evapotranspiration (Ec) respectively. From different sizes subplots an example as how the melon crop are located is showed.

Fig 2. Monthly precipitation and irrigation applied, in mm, for melon and wheat crop.

Fig 3. Original data of the four variables studied including the nitrogen doses applied in the melon crop along the transect: A) Grain nitrogen content (GN), B) Grain weight (GW), C) Wheat nitrogen content (PN) and D) Wheat weight (PW). Black line represents the trend of each variable versus distance (see Table 3).

Fig 4. Correlations with nitrogen applied (Napp) of each variable: A) Grain nitrogen content (GN), B) Grain weight (GW), C) Wheat nitrogen content (PN) and D) Wheat weight (PW).

Fig 5. Effect of N applied in previous melon crop on: A) grain weight and wheat N content; B) wheat weight and wheat N content; C) grain weight and grain N content.
Fig 6. Multifractal analysis of the four variables studied: A) Function $\tau(q)$ versus q, B) derived generalized dimensions (D_q) from $\tau(q)$. The plotted variables are Grain nitrogen content (GN), Grain weight (GW), Wheat nitrogen content (PN) and Wheat weight (PW).

Fig 7. Entropy study: A) relative entropy, $E(\delta)$, of nitrogen applied (Napp), B) increment of relative entropy, $\Delta E(\delta)$, of Napp. The equivalent distance to the number of data points (δ) are marked in $E(\delta)$.

Fig 8. Relative entropy ($E(\delta)$) respect to number of data points (δ) of: A) Grain nitrogen content (GN), B) Grain weight (GW), C) Wheat nitrogen content (PN) and D) Wheat weight (PW). Black lines represents $E(\delta)$ based on entropy dimension (D_1) of each variable.

Fig 9. Increment of relative entropy ($\Delta E(\delta)$) respect to number of data points (δ) of: A) Grain nitrogen content (GN), B) Grain weight (GW), C) Wheat nitrogen content (PN) and D) Wheat weight (PW). Black lines represents $\Delta E(\delta)$ based on entropy dimension (D_1) of each variable.
Fig. 1

W1 (60% ETc) W2 (100% ETc) W3 (140% ETc) Transect Irrigation line Melon plant
Fig. 2

Water (mm)

- Precipitation
- Irrigation

Melon crop

Wheat crop

May-06 Jun-06 Jul-06 Aug-06 Sep-06 Oct-06 Nov-06 Dec-06 Jan-07 Feb-07 Mar-07 Apr-07 May-07 Jun-07
Fig. 4

A) Grain N content (kg N ha\(^{-1}\))

- Equation: \(y = 0.1471x + 24.773\)
- \(R^2 = 0.43\)
- Correlation: \(r = 0.66\)

B) Grain Weight (kg ha\(^{-1}\))

- Equation: \(y = 10.73x + 3039\)
- \(R^2 = 0.51\)
- Correlation: \(r = 0.72\)

C) Plant N content (kg N ha\(^{-1}\))

- Equation: \(y = 0.205x + 24.63\)
- \(R^2 = 0.58\)
- Correlation: \(r = 0.77\)

D) Plant Weight (kg ha\(^{-1}\))

- Equation: \(y = 20.52x + 5589\)
- \(R^2 = 0.51\)
- Correlation: \(r = 0.72\)
Fig. 5

A

Grain weight (kg ha\(^{-1}\))

Wheat N content (kg N/ha\(^{-1}\))

y = 3834.6ln(x) - 10482

R\(^2\) = 0.92

B

Wheat weight (kg ha\(^{-1}\))

Wheat N content (kg N ha\(^{-1}\))

y = 7357.8ln(x) - 20361

R\(^2\) = 0.92
Fig 6.

A

B

\[\tau(q) \]

\[\pm \]

GW and PW
GN and PN

\[D_q \]

GW
PW
GN
PN

\[0.80 \]

\[0.85 \]

\[0.90 \]

\[0.95 \]

\[1.00 \]

\[1.05 \]

\[1.10 \]

\[1.15 \]

\[1.20 \]

\[0.80 \]

\[0.85 \]

\[0.90 \]

\[0.95 \]

\[1.00 \]

\[1.05 \]

\[1.10 \]

\[1.15 \]

\[1.20 \]
Fig. 7

A

B
Fig. 8
Fig. 9

A

ΔE(δ)

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.00
0.50
1.00
1.50
2.00
2.50

ln(δ)

B

ΔE(δ)

0.008
0.006
0.004
0.002
0.000
0.00
0.50
1.00
1.50
2.00
2.50

ln(δ)

C

ΔE(δ)

0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.00
0.50
1.00
1.50
2.00
2.50

ln(δ)

D

ΔE(δ)

0.016
0.014
0.012
0.010
0.008
0.006
0.004
0.002
0.000
0.00
0.50
1.00
1.50
2.00
2.50

ln(δ)