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Abstract.  Crustal thickness is an important factor affecting lithosphere structure and therefore deep 
geodynamics. In this paper, we propose to apply deep learning neural networks called stacked sparse 10 
auto-encoder to obtain crustal thickness for eastern Tibet and western Yangtze craton. Firstly taking 
phase and group velocities simultaneously as input and theoretical crustal thickness as output, we 
construct twelve deep neural networks trained by 70,000 and tested by 30,000 theoretical models. We 
then invert observed phase and group velocities by these twelve neural networks. Based on test errors 
and misfits with other crustal thickness models, we select the optimized one as crustal thickness for 15 
study areas. Compared with other ways detected crustal thickness such as seismic wave reflection and 
receiver function, we conclude that deep learning neural network is a promising, believable and 
inexpensive tool for geophysical inversion. 

1 Introduction 

Tibetan Plateau is an example of a large orogenic plateau formed as a result of Eurasian continent 20 
and Indian continent collision. The morphology of the region along the eastern margin of the Tibetan 
Plateau, adjacent to the strong rigid crustal basement of the Sichuan Basin, is characterized by very 
steep relief with high mountain ranges and steep peaks (Clark et al., 2004; Burchfiel et al., 1995; Zhu et 
al.,2012). Longmen mountain fault occurred Wenchuan earthquake of 12 May 2008 and Lushan 
earthquake of 20 April 2013 is between  Tibetan Plateau and the Sichuan Basin. In this paper, we try to 25 
attain crust thickness for eastern Tibet and western Yangtze craton and analysis geodynamic 
implications. Discontinuity between crust and mantle called moho discontinuity is an important one for 
geodynamics such as crustal evolution, tectonic activities and so on, in addition to the correcting 
gravity for the crustal effects, seismic tomography and geothermal modeling. The depth of moho or 
called crust thickness varies greatly over small length scales and has significant effects on fundamental 30 
mode surface waves(Meier et al.,2007).There are several methods to get moho depth, such as deep 
seismic sounding profile for china continent(Zeng et al.,1995), inverting satellite gravity data to get 
whole global crust and lithophere thickness(Fang et al.,1999), inverting Bouguer gravity and 
topography data to get moho depth for china and its adjacent regions(Huang et al.,2008; Guo et al., 
2012),inverting receiver function to get moho depth and Possion’s ratio for china continent (Chen et 35 
al.,2010;Zhu et al.,2012; Xu et al.,2007;). Especially, a newest crust model called crust1.0 at 1o×1o 
(Laske et al.,2013; Stolk et al., 2013) are based on refraction and reflection seismology as well as 
receiver function studies. As a consequence, resolution and consistency among different crust models 
are high in regions with good data coverage, however, crustal thickness estimates are largely 
extrapolated  in regions with poor or no data coverage. In order to overcome these defaults, another 40 
kind of fully non-linear method called neural network to put forward to get crustal thickness(Devile et 
al.,1999; Meier et al.,2007). 

Dispersion characteristic of surface wave provide a powerful tool to research structure of crust and 
upper mantle(Legendre, C. P. et al.,2015). So far phase and group velocity measurements of fundamental 
mode surface waves are most commonly used to constrain shear-velocity structure in the crust and 45 
upper mantle on a global scale (Zhou et al. 2006) or on regional scale (Zhu et al.,2002; Zhang et al.,2011), 
also the newly developed ambient noise surface wave tomography has been used to constrain shear-
velocity structure(Sun et al.,2010; Yao et al.,2006; Zheng et al.,2008; Zhou et al.,2012),while a few works to 
invert fundamental mode surface wave data for global or regional crustal thickness and to present a 
global or regional crustal thickness model(Devile et al.,1999;Meier et al.,2007; Das & Nolet 2001; 50 



 2 

 

Shapiro & Ritzwoller ,2002; Lebedev et al.,2013). In this article, we will investigate how to retrieve the 
crustal thickness for eastern Tibet and western Yangtze craton from newest and high-resolution phase 
and group velocity  maps (Xie et al.,2013). As seismology points out that there are many factors affect 
phase and group velocity, and inverting them for discontinuities within the earth forms a non-linear 
inverse problem(Meier et al.,2007). Because of strong non-linearity between crust thickness and  5 
surface wave dispersion and large variance of crust thickness we cannot treat it with a linear inverse 
problem as Montagner & Jobert (1988) stated. As periods and method measured differently between  
group velocity and phase velocity, which the probing depths are different  and measure error are largely 
independent, the simultaneous inversion of group velocity and phase velocity is substantially better 
than the use of either alone(Shapiro & Ritzwoller,2002). We focus on deep learning neural networks 10 
instead to solve the non-linear inverse problem, inverting crustal thickness from phase and group 
velocity measurements. 

Since strong nonlinear relation among geophysical variables, neural networks have been widely 
used in different geophysical applications well summarized by van der Baan & Jutten (2000) such as in 
electrical impedance tomography(Lampinen &Vehtari ,2001), in seismic processing including trace 15 
editing, travel time picking, horizon tracking, and velocity analysis. Devilee et al.(1999) were the first 
to use a neural network to invert surface wave velocities for Eurasian crustal thickness in a fully non-
linear and probabilistic manner. Meier et al.(2007) further develop the methods of Devilee et al. (1999), 
then invert surface wave data for global crustal thickness on a 2◦ × 2◦ grid globally us ing a neural 
network. Although traditional shallow neural network can present nonlinear inverse function, it maybe 20 
cannot learn or approximate the real inverse function well when the real inverse function is too 
complicated. In contrast, deep learning neural network can overcome this problem since it has powerful 
representation abilities and can discover intricate structures in large data sets by using the back-
propagation algorithm to indicate how a machine should change its internal parameters that are used to 
compute the representation in each layer from the representation in the previous layer (LeCun 25 
et.al.,2015). 

To the best of our knowledge, we are the first to propose deep learning neural networks to learn and 
invert crustal thickness, which reveal crustal thickness is strong nonlinear with respect to phase and 
group velocity. The merits of our methods include: our method is inexpensive because we  require a 
few observed data about phase and group velocities to obtain crustal thickness by using well-trained 30 
deep learning neural networks. Moreover, our deep learning neural networks train on vast synthetic 
models. Secondly,  since deep learning neural networks can represent complex functions, it is possible 
to learn the crustal thickness inverse function precisely. Lastly, our results show changes of the number 
of neurons in each layer have little influence on test errors when the numbers of network layer achieve 
six and test errors are about 2.5e-6 , which indicates deep learning neural networks are robust to neural 35 
network structures with suitable layer numbers.  

As Meier et al. (2007) demonstrated that the neural network approach for solving inverse problems 
is best summarized by three major steps: (1)forward problem. In this stage we proceed by randomly 
sampling the model space and solve the forward problem for all visited models. (2) designing a neural 
network structure. In this stage taking phase and group velocities as inputs and theoretical   crustal 40 
thickness as outputs we train the deep learning neural networks and get an optimized one.(3) inverse 
problem. Base on trained networks we invert crustal thickness from observed phase and group 
velocities. In what follows we first give a short introduction to deep learning neural networks, and 
show how to train deep learning neural networks to model surface wave dispersion based on synthetic 
seismogram, then invert dispersion curves based on the trained networks. Finally we compare our 45 
crustal model with other crustal thickness models, and discuss the geodynamic implication implied by 
our model.  

 
 
2 Deep  Learning Neural Networks 50 

In geophysics the real inverse function is usually a complicated one with respect to geophysical 
observable variables. Traditional linear inversion modeling the real inverse function as a linear 
function can resolve linear relation problems however which depend on data coverage and initial 
models. Usually these linear methods can capture main information about the real inverse function. 
However, they cannot deal with nonlinear inverse functions. Neural network has its origins in 55 
attempts to find mathematical representations of information processing in biological 
systems(Bishop ,1995). The more deep strength of Artificial Neural Networks (ANNs) is, the more 
capabilities learn to infer complex, non-linear, underlying relationships without any a priori 
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knowledge of the model(Bengio,2009). Traditional shallow neural network has gained in popularity in 
geophysics this last decade and has been applied successfully to a variety of problems such as well log, 
interpretation of seismic data, geophysical inversion and so on. Although traditional shallow neural 
network can present nonlinear inverse function, it can only learn the relatively simple inverse function. 
In contrast, deep learning neural network has powerful representation ability and can apply a big 5 
geophysical observable data to learn and approximate the complicated inverse function well.  

Based on the analysis above, we design deep learning neural network to obtain crustal thickness for 
eastern Tibet and western Yangtze craton. Compared with traditional shallow neural networks, deep 
learning neural network allows computational models that are composed of multiple processing layers 
to learn representations of data with multiple levels of abstraction and can learn complex functions.  10 
The essence of deep learning is building an artificial neural network with deep structures to simulate 
the analysis and interpretation process of human brain for data such as image, speech, text, and so on. 
However, many research results suggest that gradient-based training of a deep neural network gets 
stuck in apparent local minima, which leads to poor results in practice. Fortunately, the greedy layer-
wise training algorithm proposed by Hinton et.al 2006  to overcome the optimization difficulty of deep 15 
networks effectively. The training processing of deep neural networks is divided into two steps. Firstly, 
unsupervised learning methods are employed to pre-train each layer parameters with the output of the 
previous layer as the input, giving rise to initialize parameter values. After that, the gradient-based 
method is used to finely tune the whole neural network parameter values with respect to a supervised 
learning criterion as usual. The advantage of the unsupervised pre-training method at each layer can 20 
help guide the parameters of that layer towards better regions in parameter space (Bengio,2009). There 
are multiple types of deep learning neural network, such as convolutional neural networks, deep belief 
net and stacked Sparse Auto-encoders(sSAE). In this paper, we use sSAE to approximate the inverse 
function. The structure of sSAE is stacked by sparse autoencoders to extract abstract features. Here we 
introduce Sparse Auto-encoder briefly, and detailed description of the network training method is given 25 
by Liu et al.(2015). 

A typical Sparse Auto-Encoder (SAE) can be seen as a neural network with three layers, as shown 
in Figure 1, including one input layer, one hidden layer, and one output layer. The input vector and the 
output vector are denoted by v and v�, respectively. The matrix W is associated with the connection 
between the input layer and the hidden layer. Similarly, the matrix W�  connects the hidden layer to the 30 
output layer. The vector b and 𝑏𝑏� are the bias vectors associated with the units in the hidden layer and 
the output layer, respectively. The SAE is trained to encode the input vector v into some representation 
so that the input can be reconstructed from that representation.  Let f(x) denote the activation function, 
and the activation vector of the hidden layer then is calculated (with an encoder) as: 

z=f(Wv+b),         (1) 35 
where z is the encoding result and some representation for the input v. The representation z, or code is 
then mapped back (with a decoder) into a construction v� of the same shape as v. The mapping happens 
through a similar transformation, e.g.: 

v� = 𝑓𝑓(𝑊𝑊� 𝑧𝑧 + 𝑏𝑏�)                  (2) 
 40 

 
Figure 1. An auto-encoder with one hidden layer.(Liu et al.,2015) 

  
SAE is an unsupervised learning algorithm which sets the target values to be equal to the inputs and 
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constrain output of hidden layer  which are near to zero and most hidden layer are inactive, the cost 
function is expressed as: 

Jsparse (W, b) = J(W, b) + β∑ ρlog ρ
ρ�j

+ (1 − ρ)log 1−ρ
1−ρ�j

S2
j=1      (3) 

Here J(W, b) is cost function without sparsity constrain, β controls the weight of the sparsity penalty 
term, S2 is the number of neurons in the hidden layer, and the index j is summing over the hidden units 5 
in our network.  ρ� j is the average activation of hidden unit j,  ρ is a sparsity parameter, typically a small 
value close to zero. 

Further, a stacked Sparse Auto-Encoder (sSAE) is a neural network consisting of multiple layers of 
SAE in which SAE are stacked to form a deep neural network by feeding the representation of the SAE 
found on the layer below as input to the current layer. Using unsupervised pre-training methods, each 10 
layer is trained as a sSAE by minimizing the error in reconstructing its input which is the output code 
of the previous layer. After all layers are pre-trained,  we add a logistic regression layer on top of the 
network, and then train the entire network by minimizing  prediction error  as we would train a 
traditional neural network.  For example, a sSAE with two hidden layers is shown in Figure 2. This 
sSAE is composed of two SAEs.  The first SAE consists of the input layer and the first hidden layer, 15 
and the representation or code of the input v is h1 = f(W1v + b1). The second SAE comprises of  two 
hidden layers, and the code of h1 is  h2 = f(W2h1 + b2). Each SAE is added to a decoder layer as 
shown in Figure 1, and we can then employ unsupervised pre-training methods to train each SAE by 
expression (1). Finally, the matrix W1 , W2  ,bias vector b1  and b1 , are initialized. We then apply 
supervised fine-tuning methods to train entire network.  Since our aim is calculating crustal thickness 20 
and this is a regression problem, we firstly attach a layer connected fully with last layer of the encoder 
part (the matrix Ws). After that, we train this network as done in a traditional neural network. 

 

Figure 2: Stacked Sparse Auto-Encoder with two hidden layers. 

3 Inverting surface wave data for crustal thickness 25 

In this section, we’ll introduce how to train a sSAE deep learning neural network and invert 
crust thickness based on this trained network. 

3.1 data preparation 

      We closely follow the model parametrisation  methodology outlined in de Wit et al. (2014) , which 
is based on PREM and is parametrised on a discrete set of 185 grid points used by Mineos(Masters et 30 
al., 2014). In addition, these models we’ve got show no correlations between physical parameters such 
as velocity, density, 𝜂𝜂 and attenuation profiles.  As the model parametrisation  methodology mentioned 
above, we generate 100,000 synthetic models based on  the 1-D reference  models PREM, which are 
randomly drawn from the prior model distribution, also prior ranges for the various parameters in our 
model are given in tables A.2–A.4.of de Wit et al.(2014). We use the Mineos package  to compute 35 
phase and group velocity for fundamental mode Rayleigh waves for all 100,000 synthetic 1-D earth 
models. 
      As for observation data used in stage of inversion below, it is worth noting that in principle, group 
and phase velocities carry the same information, although group velocities are more sensitive to the 

h1 
h2 

y 

W1 
W2 

Ws 

b1 b2 bs 

v 
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shallow structure. Since a larger part of the signal is affected by the crustal structure, combination two 
types of data will constrain crustal thickness better  in the presence of noise. The two are related by 
 

𝑈𝑈(𝑇𝑇) = 𝑐𝑐(𝑇𝑇)

1+ 𝑇𝑇
𝑐𝑐(𝑇𝑇)

𝑑𝑑𝑐𝑐 (𝑇𝑇)
𝑑𝑑𝑇𝑇

         (4) 

Where U denotes group velocity, C denotes phase velocity and T is period. Based on Rayleigh wave 5 
phase velocity from ambient noise(Xie et.al,2013), we compute corresponding group velocity 
according(4). 

3.2 training sSAE deep learning neural network 

As we all know, using a set of examples of corresponding input–output pairs, artificial neural 
networks can approximate an arbitrary non-linear function to solve the non-linear inverse problem. 10 
These examples are presented to a network in a so-called training process, during which the free 
parameters of a network are modified to approximate the function of interest(de Wit et al. 2014). Here 
adopting sSAE deep learning neural network, we take seismological observations (that is group and 
phase velocity of Rayleigh wave) as input, and get the output of earth structural parameters(that is 
crustal thickness).   15 

Neural network training is sensitive to the random initialization of the network parameters. 
Therefore, it is common practice to train several neural networks with different initialisations, and 
subsequently choose the network which performs best on a given synthetic test data set, and the 
network which performed best on the test set is used to draw inferences from the observed data. After 
trying many times, we find the proportion of training data set to test one is 3:1 is reasonable. We’ve got 20 
final test errors which may be produced not only by different neural network structure decided by the 
number of inputting neuron, hidden layers and neuron in middle layer, also optional  parameters such 
as number of train epochs and size of batch. What’s more, type of activation function, value of learning 
rate, zero masked fraction, and value of non-sparsity penalty can affect final test errors. The table 1 
below gives twelve cases and their corresponding test errors.  25 

3.3 inverting crust thickness 

Based on our all twelve neural networks, we invert Rayleigh phase velocities(10~35.0mHz) and 
group velocities (10~30.0mHz) to attain twelve crustal thickness models for eastern Tibet and western 
Yangtze craton. Considering not only the test errors of sSAE networks, also misfits and correlation 
coefficients of our twelve models with crustal thickness models from other research, we select network 30 
structure as shown in table 1 shown in ※. We find the best fit crustal thickness model from sSAE 
(Figure 3). We compare with same region crustal thickness from receiver function(Zhu et al.,2012), and 
two other global crustal thickness models, CRUST2.0 from Bassin et al. (2000) and the CUB2 model 
from Shapiro&Ritzwoller (2002)( Figure 4). The correlation coefficients of our model with ZJS, 
CRUST2.0 and CUB2 (Figure 5) are shown our model is best correlations with CUB2 and worst with 35 
ZJS because of model ZJS attained from receiver function has relatively  sparse stations with poor data 
coverage and lower resolution. 

Table1 deep learning neural network structures taking in this article 
sSAE Structure parameters Error 

×10-6 
CUB2 CRUST2.0 ZJS 

Layers D E F G H G H G H 

[21 50 10 1] Layer 1 0.3 10 1e4 170.4 
 7.32 0.78 

 
7.60 
 

0.79 
 

8.66 
 

0.72 
 Others 0 

[21 50 10 1] Layer 1 0.3 10 1e3 48.36 6.66 0.76 
 

7.29 
 

0.77 
 

6.62 
 

0.73 
 Others 0 

[21 50 10 1] Layer 1 0.3 10 1e2 20.09 
 7.00 0.75 

 
7.18 
 

0.76 
 

6.02 
 

0.68 
 Others 0 

[21 50 10 1] Layer 1 0.3 100 1e3 73.19 6.58 0.77 
 

7.88 
 

0.79 
 

7.65 
 

0.73 
 Others 0 

[21 50 10 1]※ Layer 1 0.3 100 1e2 8.40 
 6.62 0.78 

 
6.70 
 

0.80 
 

6.63 
 

0.69 
 Others 0 

[21 50 10 1] Layer 1 0.01 100 1e2 6.64 6.42 0.77 
 

6.97 
 

0.81 
 

6.86 
 

0.68 
 Others 0 

[21 10 2 1] Layer 1 0.01 100 1e2 7.47 
 7.20 0.78 

 
7.43 
 

0.78 
 

8.15 
 

0.72 
 Others 0 

[21 100 50 20 1] Layer 1 0.5 100 1e2 4.77 8.07 0.74 9.87 0.79 9.63 0.63 
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Others 0      
[21 200 50 20 10 
1] 

Layer 1 0.5 100 1e2 2.73 
 13.1 0.71 

 
14.8 
 

0.78 
 

16.0 
 

0.63 
 Others 0 

[21 200 100 50 
20 10 5 1] 

Layer 1 0.5 100 1e2 3.33 8.93 0.77 
 

10.5 
 

0.83 
 

11.6 
 

0.66 
 Others 0 

[21 200 100 50 
20 10 5 1] 

Layer 1 0.5 100 50 2.53 
 12.6 0.79 

 
13.7 
 

0.85 
 

16.5 
 

0.67 
 Others 0 

[21 50 40 30 20 
10 5 1] 

Layer 1 0.5 100 50 2.54 12.3 0.77 14.3 0.80 15.2 0.73 Others 0 
In this article, we fixed the following four parameters in every situation: A-type of activation 

function(sigma); B-learning rate(1); C- zero masked fraction(0.5). 
various parameters: D-non-sparsity penalty; E-number of epochs; F-batchsize. 
G-RMS misfit of our result with other model; H-correlation coefficient of our result with other model. 
※- selected sSAE neural network structure 5 

 

             

   

   

Figure 5  (From left to right) The correlation coefficient of our model with ZJS, CRUST2.0 and CUB2 10 

Figure 3 crustal thickness of western Yangtze 
craton. The black lines in the figure show 
structure lines.  The blue lines show boundaries 
of sedimentary basins . The red dots show 
seismic events in this region from 1975  to 
2015, and size of dot demonstrates size of 
magnitude from Ms6.0 to Ms8.0. The yellow 
and purple stars demonstrate Wenchuan and 
Lushan earthquakes respectively. These are 
same to Figure4. 
 

Figure 4 crustal thickness of model 
CUB2 from Shapiro&Ritzwoller (2002) 
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4 Discussion 
On the one hand, we can attain the moho depth and resultant geodynamic implication in research 

region from our result. We find our results are coincidence roughly with model ZJS,CUB2, CRUST2.0 
(Fig.3,Fig.4, Fig.5), and the relatively good correlations of our result with CUB2,CRUST2.0 are shown 
in Fig.5. All have characteristics of  deep crustal thickness in the west of Longmen mountain and 5 
relatively shallow in the east. Moreover, our results reveal more details: the eastern Tibetan Plateau 
crustal thickness is complex and changes largely with characteristic of  deep west and shallow east. The 
average crust thickness is  about above 60km, especially there is about 70-75km at Qiangtang block,  
under which there is a north dipping moho gradient zone. There is relatively shallow crust at Songpa-
Ganzi block and  is characteristic of decreasing in northwest-southeast orientation. Model CUB2.0 tells 10 
us the crustal thickness of Sichuan basin is about 40km and is relatively smooth, however our model 
reveals there are some changes about crustal thickness in this region, that is crustal thickness is thin 
around Chengdu especially northeastward to Chengdu, in addition there is about 50km thick crust 
under Qinlin-Dabei fold belt, also we can get that crustal thickness of northeast to Sichuan basin  is 
about 45~48km.What’s more, crustal thickness around Xi’an and Ordos basin is shallow about 35km. 15 
Conversely, change of crustal thickness in Sichuan-Yunnan block is sharp, which is 60km in northwest 
and 35km in southeast. All detailed information is consistence with Wang et.al(2010)  who  attained the 
crustal thicknesses estimated by the H-k stacking method based on the broadband tele-seismic data 
recorded at 132 seismic stations in Longmen mountains and adjacent regions( 26°~35°N, 98°~109°E ). 
In addition, compared with the distribution of the epicenters during 1970-2015, great earthquakes in 20 
Sichuan and Yunnan have occurred in brittle upper crust, where moho depth changes sharply as to 
about 10km such as Longmen mountain fault zone where occurred great Ms 8.0 Wenchuan earthquake 
in 2008 and Ms 7.0 Lushan earthquake in 2013. The reason may be that main fault cut moho where 
material in crust and mantle  exchange and accumulating press induce a series of earthquakes 
frequently.  25 

On the other hand, our results show deep learning neural networks can invert crustal thickness 
effectively due to their owning capability to represent complex functions: 

Test errors of deep learning neural network may be influenced by the number of layer in networks 
which shows more layers induce smaller test errors, which we can attain from Table 1 when the 
number of layer in networks adds from three to six, test error decreases from 1.7e-4 to 2.5e-6. In 30 
addition, training parameters as batchsize decrease from 1e4 to 1e3 and test error decreases from 1.7e-4 
to 2.5e-5. Also when epochs increase from 10 to 100, corresponding test error decreases from 2.0e-5 to 
8.4e-6.  

The robustness of deep learning neural networks is strong. When the number of layers in network 
achieves six, changes of the number of neurons in each layer have little influence on test errors which 35 
is about 2.5e-6. 

The neural network structure shown in ※ from table 1 reveals misfits of our model with model 
CUB2, CRUST2.0 and ZJS are relatively low with 6.62, 6.70 and 6.63, and corresponding correlation 
coefficients are relatively  high with 0.78, 0.80 and 0.69 respectively, however, test errors is 8.4e-6 and 
is not minimum. This tells us test error may be not the only criterion determining which neural network 40 
is best because small test error may be induced by overfit.  

5 Conclusion and remarks 

Taking use of sSAE deep learning network, we present moho depth map of eastern Tibet and 
western Yangtze craton (Fig.3). The data sets consist of phase velocities of Rayleigh waves from 
Xie(2013) at discrete frequency of  10.0, 12.5, 15.0, 17.5, 20.0, 22.5, 25.0, 27.5, 30.0, 32.5, 35.0 mHz 45 
and derived group velocities of  Rayleigh waves at discrete frequency of  10.0, 12.5, 15.0, 17.5, 20.0, 
22.5, 25.0, 27.5, 30.0 mHz.  We conclude that: 

(1)  For all our simulations we use sSAE with different neural network structures which are 
decided by many factors such as the number of layers and neurons in neural networks, optional 
parameters  as the number of epoch and batchsize, type of activation function, values of learning rate 50 
and non-sparsity penalty and so on. We find that the number of hidden units is not a crucial parameter 
and networks with different number of hidden units give similar results, however batchsize is an 
important factor for results. 

(2)   After invert these twelve networks, different networks produced different results. Compared 
with other crustal thickness models we find network with the smallest test error is not the best result 55 
always. When test errors achieve some value, the misfits are high and  correlation coefficients are low, 

http://www.baidu.com/link?url=zzp1-0UbQMj9XvXt5Kj5HESfNSf0c6sBPbG4n78vdjRH_czmt5dyOUAUhbRu3sob4bs24rJ3VVhE6f-Z2-Ozb_M0t27A9WxQrX5dBXHVme_�
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which we think it is maybe caused by overfit. In our future work, we’ll focus on how to resolve this 
problem in using sSAE. 

(3) We present a crustal thickness model for eastern Tibet and western Yangtze craton. Compared 
our model with current knowledge about crustal structure as represented by ZJS,CRUST2.0, CUB2. 
The overall agreement with these three models is very good, and agreement is generally better with 5 
CUB2.  

(4)   The results are obtained using a neural network approach sSAE which is widely and 
successfully used in pattern recognition . As we all know, geophysics is so complex that we should 
analysis and enhance neural network to apply to these complicated problems. 

 10 
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