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Abstract. Crustal thickness is an important factor affecting lithosphere structure and therefore deep 

geodynamics. In this paper, we propose to apply deep learning neural networks called stacked sparse 10 

auto-encoder to obtain crustal thickness for eastern Tibet and western Yangtze craton. Firstly taking 

phase and group velocities simultaneously as input and theoretical crustal thickness as output, we 

construct twelve deep neural networks trained by 70,000 and tested by 30,000 theoretical models. We 

then invert observed phase and group velocities by these twelve neural networks. Based on test errors 

and misfits with other crustal thickness models, we select the optimized one as crustal thickness for 15 

study areas. Compared with other ways detected crustal thickness such as seismic wave reflection and 

receiver function, we conclude that deep learning neural network is a promising, believable and in 

expensive tool for geophysical inversion. 

1 Introduction 

Tibetan Plateau is an example of a large orogenic plateau formed as a result of Eurasian continent 20 

and Indian continent collision. The morphology of the region along the eastern margin of the Tibetan 

Plateau, adjacent to the strong rigid crustal basement of the Sichuan Basin, is characterized by very 

steep relief with high mountain ranges and steep peaks (Clark et al., 2004; Burchfiel et al., 1995; Zhu et 

al.,2012). Longmen mountain fault occurred Wenchuan earthquake of 12 May 2008 and Lushan 

earthquake of 20 April 2013 is between Tibetan Plateau and the Sichuan Basin. In this paper, we try to 25 

attain crust thickness for eastern Tibet and western Yangtze craton and analysis geodynamic 

implications. Discontinuity between crust and mantle called moho discontinuity is an important one for 

geodynamics such as crustal evolution, tectonic activities and so on, in addition to the correcting 

gravity for the crustal effects, seismic tomography and geothermal modeling. The crust thickness varies 

greatly over small length scales and has significant effects on fundamental mode surface waves(Meier 30 

et al.,2007,Grad et al.,2009).There are several methods to get crustal thickness, such as deep seismic 

sounding profile for china continent(Zeng et al.,1995),inverting satellite gravity data to get whole 

global crust and lithophere thickness(Fang et al.,1999),inverting Bouguer gravity and topography data 

to get crustal thickness for china and its surrounding areas(Huang et al.,2008;Guo et al., 

2012),inverting receiver function to get crustal thickness and Possion’s ratio for china continent (Chen 35 

et al.,2010;Zhu et al.,2012;Xu et al.,2007;). Especially, a newest crust model called crust1.0 at 

1
o
×1

o
(Laske et al.,2013;Stolket al., 2013) are based on refraction and reflection seismology as well as 

receiver function studies. As a consequence, resolution and consistency among different crust models 

are high in regions with good data coverage, however, crustal thickness estimates are largely 

extrapolated in regions with poor or no data coverage. In order to overcome these defects, another kind 40 

of fully non-linear method called neural network to put forward to get crustal thickness (Devile et 

al.,1999; Meier et al.,2007). 

Dispersion characteristic of surface wave provide a powerful tool to research structure of crust and 

upper mantle(Legendre, C. P. et al.,2015). So far phase and group velocity measurements of 

fundamental mode surface waves are most commonly used to constrain shear-velocity structure in the 45 

crust and upper mantle on a global scale (Zhou et al. 2006;Shapiro &Ritzwoller ,2002) or on regional 

scale (Zhu et al.,2002;Zhang et al.,2011), also the newly developed ambient noise surface wave 

tomography has been used to constrain shear-velocity structure(Sun et al.,2010;Yaoet al.,2006;Zheng et 

al.,2008;Zhou et al.,2012),while a few works to invert fundamental mode surface wave data for global 

or regional crustal thickness and to present a global or regional crustal thickness model(Devile et 50 
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al.,1999;Meier et al.,2007; Das &Nolet 2001; Lebedev et al.,2013).In this article, we will investigate 

how to retrieve the crustal thickness for eastern Tibet and western Yangtze craton from newest and 

high-resolution phase and group velocity maps(Xie et al.,2013). As seismology points out that there are 

many factors affect phase and group velocity, and inverting them for discontinuities within the earth 

forms a non-linear inverse problem(Meier et al.,2007). Because of strong non-linearity between crust 5 

thickness and surface wave dispersion and large variance of crust thickness we cannot treat it with a 

linear inverse problem as Montagner&Jobert (1988) stated. As periods and method measured 

differently between group velocity and phase velocity, which the probing depths are different  and 

measure error are largely independent, the simultaneous inversion of group velocity and phase velocity 

is substantially better than the use of either alone(Shapiro & Ritzwoller,2002). We focus on deep 10 

learning neural networks instead to solve the non-linear inverse problem, inverting crustal thickness 

from phase and group velocity measurements. 

Since strong nonlinear relation among geophysical variables, neural networks have been widely 

used in different geophysical applications well summarized by van der Baan &Jutten (2000) such as in 

electrical impedance tomography(Lampinen&Vehtari ,2001), in seismic processing including trace 15 

editing, travel time picking, horizon tracking, and velocity analysis. Devilee et al.(1999) were the first 

to use a neural network to invert surface wave velocities for Eurasian crustal thickness in a fully non-

linear and probabilistic manner. Meier et al.(2007) further develop the methods of Devilee et al. (1999), 

then invert surface wave data for global crustal thickness on a 2◦ × 2◦ grid globally using a neural 

network. Although traditional shallow neural network with less number of hidden layers, can present 20 

nonlinear inverse function, it maybe cannot learn or approximate the real inverse function well when 

the real inverse function is too complicated. In contrast, deep learning neural network can overcome 

this problem since it has powerful representation abilities and can discover intricate structures in large 

data sets by using the back-propagation algorithm to indicate how a machine should change its internal 

parameters that are used to compute the representation in each layer from the representation in the 25 

previous layer(LeCunet.al.,2015). 

To the best of our knowledge, we are the first to propose deep learning neural networks to learn and 

invert crustal thickness, which reveal crustal thickness is strong nonlinear with respect to phase and 

group velocity. The merits of our methods include: our method is inexpensive because we require a few 

observed data about phase and group velocities to obtain crustal thickness by using well-trained deep 30 

learning neural networks with multiple hidden layers. Moreover, our deep learning neural networks 

train on vast synthetic models. Secondly, since deep learning neural networks can represent complex 

functions, it is possible to learn the crustal thickness inverse function precisely. Lastly, our results show 

changes of the number of neurons in each layer have little influence on test errors when the numbers of 

network layer achieve six and test errors are about 2.5e-6, which indicates deep learning neural 35 

networks are robust to neural network structures with suitable layer numbers. 

As Meier et al. (2007) demonstrated that the neural network approach for solving inverse problems 

is best summarized by three major steps: (1) forward problem. In this stage we proceed by randomly 

sampling the model space and solve the forward problem for all visited models. (2) designing a neural 

network structure. In this stage taking phase and group velocities as inputs and theoretical crustal 40 

thickness as outputs we train the deep learning neural networks and get an optimized one. (3) inverse 

problem. Base on trained networks we invert crustal thickness from observed phase and group 

velocities. In what follows we first give a short introduction to deep learning neural networks, and 

show how to train deep learning neural networks to model surface wave dispersion based on synthetic 

seismogram, then invert dispersion curves based on the trained networks. Finally we compare our 45 

crustal model with other crustal thickness models, and discuss the geodynamic implication implied by 

our model. 

 

 

2 Deep Learning Neural Networks 50 

In geophysics the real inverse function is usually a complicated one with respect to geophysical 

observable variables. Traditional linear inversion modeling the real inverse function as a linear 

function can resolve linear relation problems however which depend on data coverage and initial 

models. Usually these linear methods can capture main information about the real inverse function. 

However, they cannot deal with nonlinear inverse functions. Neural network has its origins in 55 

attempts to find mathematical representations of information processing in biological 

systems(Bishop ,1995). The more deep strength of Artificial Neural Networks (ANNs) is, the more 

capabilities learn to infer complex, non-linear, underlying relationships without any a priori 



 3 

 

knowledge of the model(Bengio,2009).Traditional shallow neural network has gained in popularity in 

geophysics this last decade and has been applied successfully to a variety of problems such as well log, 

interpretation of seismic data, geophysical inversion and so on. Although traditional shallow neural 

network can present nonlinear inverse function, it can only learn the relatively simple inverse function. 

In contrast, deep learning neural network has powerful representation ability and can apply a big 5 

geophysical observable data to learn and approximate the complicated inverse function well.  

Based on the analysis above, we design deep learning neural network to obtain crustal thickness for 

eastern Tibet and western Yangtze craton. Compared with traditional shallow neural networks, deep 

learning neural network allows computational models that are composed of multiple processing layers 

to learn representations of data with multiple levels of abstraction and can learn complex functions.  10 

The essence of deep learning is building an artificial neural network with deep structures to simulate 

the analysis and interpretation process of human brain for data such as image, speech, text, and so on. 

However, many research results suggest that gradient-based training of a deep neural network gets 

stuck in apparent local minima, which leads to poor results in practice(Bengio,2009). Fortunately, the 

greedy layer-wise training algorithm proposed by Hinton et.al 2006 to overcome the optimization 15 

difficulty of deep networks effectively. The training processing of deep neural networks is divided into 

two steps. Firstly, unsupervised learning methods are employed to pre-train each layer parameters with 

the output of the previous layer as the input, giving rise to initialize parameter values. After that, the 

gradient-based method is used to finely tune the whole neural network parameter values with respect to 

a supervised learning criterion as usual. The advantage of the unsupervised pre-training method at each 20 

layer can help guide the parameters of that layer towards better regions in parameter 

space(Bengio,2009).There are multiple types of deep learning neural network, such as convolutional 

neural networks, deep belief net and stacked Sparse Auto-encoders(sSAE). In this paper, we use sSAE 

to approximate the inverse function. The structure of sSAE is stacked by sparse auto-encoders to 

extract abstract features. Here we introduce Sparse Auto-encoder briefly, and detailed description of 25 

the network training method is given by Liu et al.(2015). 

A typical Sparse Auto-Encoder (SAE) can be seen as a neural network with three layers, as shown 

in Figure 1, including one input layer, one hidden layer, and one output layer. The input vector and the 

output vector are denoted by v and  ̂, respectively. The matrix W is associated with the connection 

between the input layer and the hidden layer. Similarly, the matrix   ̂connects the hidden layer to the 30 

output layer. The vector b and  ̂  are the bias vectors associated with the units in the hidden layer and 

the output layer, respectively. The SAE is trained to encode the input vector v into some representation 

so that the input can be reconstructed from that representation. Let f(x) denote the activation function, 

and the activation vector of the hidden layer then is calculated (with an encoder) as: 

z=f(Wv+b),         (1) 35 

where z is the encoding result and some representation for the input v. The representation z, or code is 

then mapped back (with a decoder) into a construction  ̂ of the same shape as v. The mapping happens 

through a similar transformation, e.g.: 

 ̂     ̂   ̂                   (2) 

 40 

 
Figure 1.An auto-encoder with one hidden layer.(Liu etal.,2015) 

  

SAE is an unsupervised learning algorithm which sets the target values to be equal to the inputs and 



 4 

 

constrain output of hidden layer which are near to zero and most hidden layer are inactive, the cost 

function is expressed as: 

                     ∑     
 

 ̂ 
         

   

   ̂ 

  
        (3) 

Here        is cost function without sparsity constrain,   controls the weight of the sparsity penalty 

term,   is the number of neurons in the hidden layer, and the index j is summing over the hidden units 5 

in our network. ̂  is the average activation of hidden unit j,   is a sparsity parameter, typically a small 

value close to zero. 

Further, a stacked Sparse Auto-Encoder (sSAE)is a neural network consisting of multiple layers of 

SAE in which SAE are stacked to form a deep neural network by feeding the representation of the SAE 

found on the layer below as input to the current layer. Using unsupervised pre-training methods, each 10 

layer is trained as a sSAE by minimizing the error in reconstructing its input which is the output code 

of the previous layer. After all layers are pre-trained,  we add a logistic regression layer on top of the 

network, and then train the entire network by minimizing  prediction error as we would train a 

traditional neural network. For example, a sSAE with two hidden layers is shown in Figure 2. This 

sSAE is composed of two SAEs.  The first SAE consists of the input layer and the first hidden layer, 15 

and the representation or code of the input v is            . The second SAE comprises of two 

hidden layers, and the code of    is              . Each SAE is added to a decoder layer as 

shown in Figure 1, and we can then employ unsupervised pre-training methods to train each SAE by 

expression (1). Finally, the matrix  ,   ,bias vector    and   , are initialized. We then apply 

supervised fine-tuning methods to train entire network.  Since our aim is calculating crustal thickness 20 

and this is a regression problem, we firstly attach a layer connected fully with last layer of the encoder 

part (the matrix  ). After that, we train this network as done in a traditional neural network. 

 

Figure 2. Stacked Sparse Auto-Encoder with two hidden layers. 

3 Inverting surface wave data for crustal thickness 25 

In this section, we’ll introduce how to train a sSAE deep learning neural network and invert 

crust thickness based on this trained network. 

3.1 data preparation 

We closely follow the model parametrisation  methodology outlined in de Wit et al. (2014), which 

is based on the Preliminary Reference Earth Model(PREM,Dziewonski and Anderson,1981)and is 30 

parametrised on a discrete set of 185 grid points used by Mineos package(Masters et al., 2014). In 

addition, these models we’ve got show no correlations between physical parameters such as velocity, 

density, 𝜂 and attenuation profiles. As the model parametrisation  methodology mentioned above, we 

generate 100,000 synthetic models based on  the 1-D reference  models PREM, which are randomly 

drawn from the prior model distribution, also prior ranges for the various parameters in our model are 35 

given in tables A.2–A.4.of de Wit et al.(2014).We use the Mineos package  to compute phase and 

group velocity for fundamental mode Rayleigh waves for all 100,000 synthetic 1-D earth models. 

As for observation data used in stage of inversion below, it is worth noting that in principle, group 

and phase velocities carry the same information, although group velocities are more sensitive to the 

h1 
h2 

y 

W1 

W2 

Ws 

b1 b2 bs 

v 
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shallow structure. Since a larger part of the signal is affected by the crustal structure, combination two 

types of data will constrain crustal thickness better in the presence of noise (Devilee et al.,1999). The 

two are related by 

 

     
    

  
 

    

     

  

         (4) 5 

Where U denotes group velocity, C denotes phase velocity and T is period. Based on Rayleigh wave 

phase velocity from ambient noise(Xie et.al,2013) shown in Figure 3 averaged from 10 to 35mHz, we 

compute corresponding group velocity according(4) shown in Figure 4 averaged from 10 to 30mHz. 

                   

               10 

3.2 training  sSAE deep learning neural network 

As we all know, using a set of examples of corresponding input–output pairs, artificial neural 

networks can approximate an arbitrary non-linear function to solve the non-linear inverse problem. 

These examples are presented to a network in a so-called training process, during which the free 

parameters of a network are modified to approximate the function of interest(de Wit et al. 2014). Here 15 

adopting sSAE deep learning neural network, we take seismological observations (that is group and 

phase velocity of Rayleigh wave) as input, and get the output of earth structural parameters(that is 

crustal thickness). 

Neural network training is sensitive to the random initialization of the network parameters. 

Therefore, it is common practice to train several neural networks with different initialisations, and 20 

subsequently choose the network which performs best on a given synthetic test data set, and the 

network which performed best on the test set is used to draw inferences from the observed data. After 

trying many times, we find the proportion of training data set to test one is 3:1 is reasonable(Figure 5). 

We’ve got final test errors which may be produced not only by different neural network structure 

decided by the number of inputting neuron, hidden layers and neuron in middle layer, also optional 25 

Figure 4. Averaged group velocity of 

western Yangtze craton according to Xie et 

al., 2013 from 10 to 30mHz. 

 

Figure 3. Averaged phase velocity of 

western Yangtze craton(Xie et al.,2013) from 

10 to 35mHz.The black lines in the figure 

show structure lines.  The blue lines show 

boundaries of sedimentary basins. The red 

dots show seismic events in this region from 

1975 to 2015, and size of dot demonstrates 

size of magnitude from Ms6.0 toMs8.0. The 

yellow and purple stars demonstrate 

Wenchuan and Lushan earthquakes 

respectively. These are same to Figure 4, 

Figure 6 and Figure 7. 
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parameters such as number of train epochs and size of batch. What’s more, type of activation function, 

value of learning rate, zero masked fraction, and value of non-sparsity penalty can affect final test 

errors. The table 1 below gives twelve cases and their corresponding test errors. 

 5 

3.3 inverting crust thickness 

Based on our all twelve neural networks, we invert Rayleigh phase velocities(10~35.0mHz) and 

group velocities(10~30.0mHz)to attain twelve crustal thickness models for eastern Tibet and western 

Yangtze craton. Considering not only the test errors of sSAE networks, also misfits and correlation 

coefficients of our twelve models with crustal thickness models from other research, we select network 10 

structure as shown in table 1 shown in ※. We find the best fit crustal thickness model from sSAE 

(Figure 6).We compare with same region crustal thickness from receiver function(Zhu et al.,2012),and 

two other global crustal thickness models, CRUST2.0 from Bassin et al. (2000) and the CUB2 model 

from Shapiro&Ritzwoller (2002)( Figure 7). The correlation coefficients of our model with ZJS, 

CRUST2.0 and CUB2 (Figure 8) are shown our model is best correlations with CUB2 and worst with 15 

ZJS because of model ZJS attained from receiver function has relatively  sparse stations with poor data 

coverage and lower resolution. 

Table1 deep learning neural network structures taking in this article 

sSAE Structure 
parameters Error 

×10-6 

CUB2 CRUST2.0 ZJS 

Layers D E F G H G H G H 

[21 50 10 1] 
Layer 1 0.3 

10 1e4 
170.4 

 
7.32 

0.78 

 

7.60 

 

0.79 

 

8.66 

 

0.72 

 Others 0 

[21 50 10 1] 
Layer 1 0.3 

10 1e3 48.36 6.66 
0.76 

 

7.29 

 

0.77 

 

6.62 

 

0.73 

 Others 0 

[21 50 10 1] 
Layer 1 0.3 

10 1e2 
20.09 
 

7.00 
0.75 
 

7.18 
 

0.76 
 

6.02 
 

0.68 
 Others 0 

[21 50 10 1] 
Layer 1 0.3 

100 1e3 73.19 6.58 
0.77 

 

7.88 

 

0.79 

 

7.65 

 

0.73 

 Others 0 

[21 50 10 1]
※
 

Layer 1 0.3 
100 1e2 

8.40 

 
6.62 

0.78 

 

6.70 

 

0.80 

 

6.63 

 

0.69 

 Others 0 

[21 50 10 1] 
Layer 1 0.01 

100 1e2 6.64 6.42 
0.77 
 

6.97 
 

0.81 
 

6.86 
 

0.68 
 Others 0 

[21 10 2 1] 
Layer 1 0.01 

100 1e2 
7.47 

 
7.20 

0.78 

 

7.43 

 

0.78 

 

8.15 

 

0.72 

 Others 0 

[21 100 50 20 1] 
Layer 1 0.5 

100 1e2 4.77 8.07 
0.74 

 

9.87 

 

0.79 

 

9.63 

 

0.63 

 Others 0 

[21 200 50 20 10 
1] 

Layer 1 0.5 
100 1e2 

2.73 
 

13.1 
0.71 
 

14.8 
 

0.78 
 

16.0 
 

0.63 
 Others 0 

[21 200 100 50 

20 10 5 1] 

Layer 1 0.5 
100 1e2 3.33 8.93 

0.77 

 

10.5 

 

0.83 

 

11.6 

 

0.66 

 Others 0 

[21 200 100 50 

20 10 5 1] 

Layer 1 0.5 
100 50 

2.53 

 
12.6 

0.79 

 

13.7 

 

0.85 

 

16.5 

 

0.67 

 Others 0 

[21 50 40 30 20 
10 5 1] 

Layer 1 0.5 
100 50 2.54 12.3 0.77 14.3 0.80 15.2 0.73 

Others 0 

Figure 5. The relationship between proportions of training data sets to test data 

sets and test errors. 
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In this article, we fixed the following four parameters in every situation: A-type of activation 

function(sigma); B-learning rate(1); C-zero masked fraction(0.5). 

Various  parameters: D-non-sparsity  penalty; E-number of epochs; F-batchsize. 

G-RMS misfit of our result with other model;  H-correlation coefficient of our result with other model. 

※- selected  sSAE neural network structure 5 
 

               

 

 

Figure 8. (From left to right) The correlation coefficient of our model with ZJS, CRUST2.0 and CUB2 10 

4 Discussion 

On the one hand, we can attain the crustal thickness and resultant geodynamic implication in 

research region from our result. We find our results(Fig.6) are coincidence roughly with model 

CUB2,(Fig.6),and the relatively good correlations of our result with CUB2,CRUST2.0 are shown in 

Fig.8. All have characteristics of deep crustal thickness in the west of Longmenmountainand relatively 15 

shallow in the east. Moreover, our results reveal more details: the eastern Tibetan Plateau crustal 

thickness is complex and changes largely with characteristic of  deep west and shallow east. The 

average crust thickness is about above 60km, especially there is about 70-75km at Qiangtang block, 

under which there is a north dipping mohogradient zone. There is relatively shallow crust at Songpa-

Ganzi blockand is characteristic of decreasing in northwest-southeast orientation. Model CUB2.0 tells 20 

us the crustal thickness of Sichuan basin is about 40km and is relatively smooth, however our model 

reveals there are some changes about crustal thickness in this region,that is crustal thickness is thin 

around Chengdu especially northeastward to Chengdu, in addition there is about 50km thick crust 

under Qinlin-Dabei fold belt,also we can get that crustal thickness of northeast to Sichuan basin  is 

Figure 6. Crustal thickness of westernYangtze 

craton from this paper. 
Figure 7. Crustal thickness of model 

CUB2 from Shapiro&Ritzwoller (2002) 

 

http://www.baidu.com/link?url=zzp1-0UbQMj9XvXt5Kj5HESfNSf0c6sBPbG4n78vdjRH_czmt5dyOUAUhbRu3sob4bs24rJ3VVhE6f-Z2-Ozb_M0t27A9WxQrX5dBXHVme_
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about 45~48km.What’s more, crustal thickness around Xi’an and Ordos basin is shallow about 35km. 

Conversely, change of crustal thickness in Sichuan-Yunnan block is sharp, which is 60km in northwest 

and 35km in southeast. All detailed information is consistence with Wang et.al(2010)  who  attained the 

crustal thickness estimated by the H-k stacking method based on the broad band tele-seismic data 

recorded at 132 seismic stations in Longmen mountains and adjacent regions(26°~35°N,98°~109°E). In 5 

addition, compared with the distribution of the epicenters during 1970-2015, great earthquakes in 

Sichuan and Yunnan have occurred in brittle upper crust, where crustal thickness changes sharply as to 

about 10km such as Longmen mountain fault zone where occurred great Ms 8.0 Wenchuan earthquake 

in 2008 and Ms 7.0 Lushan earthquake in 2013. The reason may be that main fault cut moho where 

material in crust and mantle exchange and accumulating press induce a series of earthquakes frequently. 10 

On the other hand, our results show deep learning neural networks can invert crustal thickness 

effectively due to their owning capability to represent complex functions: 

Test errors of deep learning neural network may be influenced by the number of layer in networks 

which shows more layers induce smaller test errors, which we can attain from Table 1 when the 

number of layer in networks adds from three to six, test error decreases from 1.7e-4 to 2.5e-6. In 15 

addition, training parameters as batchsize decrease from 1e4 to 1e3 and test error decreases from 1.7e-4 

to 2.5e-5. Also when epochs increase from 10 to 100, corresponding test error decreases from 2.0e-5 to 

8.4e-6.  

The robustness of deep learning neural networks is strong. When the number of layers in network 

achieves six, changes of the number of neurons in each layer have little influence on test errors which 20 

is about 2.5e-6. 

The neural network structure shown in ※ from table 1 reveals misfits of our model with model 

CUB2, CRUST2.0 and ZJS are relatively low with 6.62,6.70 and 6.63, and corresponding correlation 

coefficients are relatively  high with 0.78, 0.80 and 0.69 respectively, however,test errors is 8.4e-6 and 

is not minimum.This tells us test error may be not the only criterion determining which neural network 25 

is best because small test error may be induced by overfit.  

5 Conclusion and remarks 

Taking use of sSAE deep learning network, we present crustal thickness map of eastern Tibet and 

western Yangtze craton(Fig.6). The data sets consist of phase velocities of Rayleigh waves from 

Xie(2013) at discrete frequency of 10.0, 12.5, 15.0, 17.5, 20.0, 22.5, 25.0, 27.5, 30.0, 32.5, 35.0mHz 30 

and derived group velocities of  Rayleigh waves at discrete frequency of 10.0, 12.5, 15.0, 17.5, 20.0, 

22.5, 25.0, 27.5, 30.0mHz.We conclude that: 

(1) For all our simulations we use sSAE with different neural network structures which are 

decided by many factors such as the number of layers and neurons in neural networks, optional 

parameters as the number of epoch and batchsize, type of activation function, values of learning rate 35 

and non-sparsity penalty and so on. We find that the number of hidden units is not a crucial parameter 

and networks with different number of hidden units give similar results, however batchsize is an 

important factor for results. 

(2) After invert these twelve networks, different networks produced different results. When test 

errors achieve some value, the misfits are high and correlation coefficients are low, which we think it 40 

is maybe caused by overfit. This means networks fit well training data set, but generalization ability 

does not increase. In our future work, we’ll focus on how to resolve this problem in using sSAE. 

(3) We present a crustal thickness model for eastern Tibet and western Yangtze craton. Compared 

our model with current knowledge aboutcrustal structure as represented by ZJS,CRUST2.0, CUB2. 

The overall agreement with these three models is very good, and agreement is generally better with 45 

CUB2.  

(4)  The results are obtained using a neural network approach sSAE which is widely and 

successfully used in pattern recognition. As we all know, geophysics is so complex that we should 

analysis and enhance neural network to apply to these complicated problems. 

 50 
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