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Abstract. Crustal thickness is an important factor affecting lithosphere structure and deep geodynamics. 

In this paper, we propose to apply deep learning neural networks called stacked sparse auto-encoder to 10 

obtain crustal thickness for eastern Tibet and western Yangtze craton. Firstly taking phase velocities of 

Rayleigh surface wave as inputs and theoretical crustal thickness as outputs, we construct twelve deep 

neural networks trained by 70,000 and tested by 30,000 theoretical models. We then invert observed 

phase velocities by these twelve neural networks. Based on test errors and misfits with other crustal 

thickness models, we select the optimized one as crustal thickness for study areas. Compared with 15 

other ways detected crustal thickness such as seismic wave reflection and receiver function, we adopt a 

new way for inversion of earth model parameters, and realize that deep learning neural network based 

on data driven with the highly nonlinear mapping ability can be widely used by geophysical inversion 

method, and our result has good agreement with high-resolution crustal thickness models. Compared 

with other methods, our experimential results reveal more details: there is a northward-dipping moho 20 

gradient zone in Qiangtang block, and relatively shallow northwest-southeast orientation crust at 

Songpa-Ganzi block. Crustal thickness around Xi’an and Ordos basin is shallow about 35km. Change 

of crustal thickness in Sichuan-Yunnan block is sharp, where crustal thickness is 60km in northwest 

and 35km in southeast. We conclude that deep learning neural network is a promising, efficient and 

believable tool for geophysical inversion. 25 

Keywords: Crustal thickness; Phase velocities; Surface wave; Stacked sparse auto-encoder; Deep 

learning ; Neural network 

1 Introduction 

The eastern Tibet and the western Yangtze craton, one of the key areas to understand the collision 

process between the Indian and Eurasian plates, and an important area for understanding the collision-30 

contact relationship between the Qinghai Tibet Plateau and the Yangtze Craton, has always been a hot 

area of the earth science research, because of the strong seismic activity, the different nature in the two 

blocks,and especially the special topography, the altitude rises abruptly from about 500 meters in 

eastern Tibet to 5000 meters in the western Yangtze craton. Many researches focous on understanding 

the crust and upper mantle structure in this regoin, especlially there have been heated debates on crustal 35 

thickness in this region. Discontinuity between crust and mantle called moho discontinuity varying 

greatly over small length scales is an important factor for geodynamics including crustal evolution, 

tectonic activities, in addition to the correcting gravity for the crustal effects, seismic tomography and 

geothermal modeling. Many researches focus on obtaining depth of moho discontinuity called crustal 

thickness by various data and different methods.  40 

Often crustal thickness can be inverted from many types of data, for instance, inverting deep 

seismic sounding profile for Chinese continent to get crustal thickness(Zeng et al.,1995), inverting 

satellite gravity data to get global crust and  lithospheric thickness(Fang et al.,1999), inverting Bouguer 

gravity and topography data to get crustal thickness for China and its surrounding areas(Huang et 

al.,2008;Guo et al., 2012),inverting receiver function to get crustal thickness and Possion’s ratio for 45 

Chinese continent (Chen et al.,2010;Zhu et al.,2012;Xu et al.,2007;). Especially, a newest crust model 

called crust1.0 at 1o×1o(Laske et al.,2013;Stolket al., 2013) are based on refraction and reflection 

seismology as well as receiver function studies. Besides these data related to crustal thickness 

mentioned above, crust thickness has significant effects on fundamental mode surface waves (Meier et 

al.,2007,Grad et al.,2009). Dispersion characteristic of surface wave provides a powerful tool to 50 
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research structure of crust and upper mantle (Legendre, C. P. et al.,2015). So far phase and group 

velocity measurements of fundamental mode surface waves are most commonly used to constrain 

shear-velocity structure in the crust and upper mantle on a global scale (Zhou et al. 2006;Shapiro 

&Ritzwoller ,2002) or on regional scale (Zhu et al.,2002;Zhang et al.,2011;Yi et al.,2008), also the 

newly developed ambient noise surface wave tomography has been used to constrain shear-velocity 5 

structure(Sun et al.,2010;Yaoet al.,2006;Zheng et al.,2008;Zhou et al.,2012),while a few works to 

invert fundamental mode surface wave data for global or regional crustal thickness and to present a 

global or regional crustal thickness model(Devile et al.,1999;Meier et al.,2007; Das &Nolet 2001; 

Lebedev et al.,2013 ). Although periods and method  measured differently between group velocity and 

phase velocity, also the probing depths are different  and measure error are largely independent, phase 10 

velocity is more sensitive to deeper structure so it is easier to infer deep structure from phase velocity 

measurements, we take phase velocity as inputs to infer crustal thickness. 

There are several inverse methods to get crustal thickness, and these methods can be broadly 

classified into two classes: (1) model-driven methods and (2) data-driven methods. For model-driven 

methods, researchers mainly consider physical relation between earth parameters space and data space 15 

to calculate inverse function. Most methods based on model-driven treat crustal thickness inversion as 

a linear problem, and most importantly, their results are heavily depended on initial earth model. In 

contrast to model-driven methods, another kind of fully non-linear data-driven method called neural 

network to put forward to get crustal thickness (Devile et al.,1999; Meier et al.,2007). Neural network 

with the highly nonlinear mapping ability is widely used by geophysical inverse method based on data-20 

driven, which apply the actual seismic, logging data and its attribute to predict earth parameters. 

Compared with model-driven inversion, data-driven inversion maps and predicts an arbitrary nonlinear 

relationship fast and accurately without considering about physical relations between earth model 

parameters and data space. Neural networks can be very useful in situations where the forward relation 

is known, but the inverse mapping is unknown or difficult to establish by more conventional analytical 25 

or numerical methods(de Wit et al.,2013). So the target of neural network inversion is to find the 

mapping from a set of training data. Neural networks have been widely used in different geophysical 

applications well summarized by van der Baan &Jutten (2000) such as in electrical impedance 

tomography(Lampinen&Vehtari ,2001), in seismic processing including trace editing, travel time 

picking, horizon tracking, and velocity analysis. Devilee et al.(1999) were the first to use a neural 30 

network to invert surface wave velocities for Eurasian crustal thickness in a fully non-linear and 

probabilistic manner. Meier et al.(2007) further develop the methods of Devilee et al. (1999), then 

invert surface wave data for global crustal thickness on a 2◦ × 2◦ grid globally using a neural network.  

As seismology points out that there are many factors affect phase velocity, inverting phase velocity 

for discontinuities within the earth forms a non-linear inverse problem (Meier et al.,2007). Because of 35 

strong non-linear relations between crust thickness and surface wave dispersion, we cannot treat it with 

a linear inverse problem as Montagner&Jobert (1988) stated. Although shallow neural network with 

less number of hidden layers, can present nonlinear inverse function, it maybe cannot learn or 

approximate the true inverse function well when the true inverse function is too complicated. In 

contrast, deep learning neural network can overcome this defect since it has powerful representation 40 

abilities and can discover intricate structures in large data sets, because it take use of the back-

propagation algorithm to indicate how a machine should change its internal parameters that are used to 

compute the representation in each layer from the representation in the previous layer 

(LeCunet.al.,2015).  

In this paper, considering the advantages and characteristics of deep learning neural network, a new 45 

fast inverse method based on data-driven, called deep stacked Sparse Auto-encoders (sSAE) neural 

network is introduced to solve the nonlinear geophysical inverse problems. We focus on deep learning 

neural networks to solve the non-linear inverse problem, and then apply them to retrieve the crustal 

thickness for eastern Tibet and western Yangtze craton from newest and high-resolution phase velocity 

maps. Based on normal mode theory we compute phase velocities for the sampled radially symmetric 50 

earth models to generate 100,000 theoretical models. Firstly we take theoretical phase velocities of 

Rayleigh surface wave with random noise as inputs to enhance robustness of neural networks and take 

corresponding theoretical crustal thickness as outputs. We construct twelve deep neural networks 

trained by 70,000 and tested by 30,000 synthetic models. We then invert observed phase velocities by 

these twelve neural networks. Based on test errors and misfits with other crustal thickness models, we 55 

select the optimized one as crustal thickness for study areas. 

To the best of our knowledge, we are the first to introduce deep learning neural networks to learn 

and invert crustal thickness, and our result reveals that crustal thickness is strong nonlinear with respect 

to phase velocity. The merits of our methods include:  Firstly, since deep learning neural networks can 
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represent complex functions, it is possible to learn the crustal thickness inverse function precisely. 

Secondly, inverse mapping based on neural network is of high efficiency because new observations can 

be inverted instantaneously once well-trained deep learning neural networks with multiple hidden 

layers are constructed. Moreover, our deep learning neural networks are trained on vast synthetic 

models. Lastly, our results show changes of the number of neurons in each layer have little influence 5 

on test errors when the numbers of network hidden layer achieve six and test errors are about 4.5e-6, 

which indicates deep learning neural networks are robust to neural network structures with suitable 

layers. In what follows, we first give a short introduction to deep learning neural networks. 

 

2 Deep Learning Neural Networks 10 

In geophysics the true inverse function is usually a very complicated one between data space and 

model space. Traditional linear inverse methods treating the true inverse function as linear one can 

resolve linear relation problems. However, they depend on physical relationships between two 

parameter spaces and initial earth models. Neural network has its origins in attempts to find 

mathematical representations of information processing in biological systems (Bishop ,1995). The 15 

more deep strength of Artificial Neural Networks (ANNs) is, the more capabilities learn to infer 

complex, non-linear, underlying relationships without any a priori knowledge of the 

model(Bengio,2009). Shallow neural network has gained in popularity in geophysics last decade and 

has been applied successfully to a variety of problems such as well-log, interpretation of seismic data, 

geophysical inversion, etc. Although shallow neural network can present nonlinear inverse function, it 20 

can only learn the relatively simple inverse function. In contrast, Many research results indicate that 

deep learning neural network has powerful representation ability and can apply a big geophysical 

observable data to learn and approximate the complicated inverse function well[ Lecun et al.,2015 

Bengio et al.,2006; Liu et al.,2015].  

Based on the analysis above, we design deep learning neural network to obtain crustal thickness for 25 

eastern Tibet and western Yangtze craton. Compared with shallow neural networks, deep learning 

neural network allows computational models that are composed of multiple processing layers to learn 

representations of data with multiple levels of abstraction and can learn complex functions.The essence 

of deep learning is building an artificial neural network with deep structures to simulate the analysis 

and interpretation process of human brain for data such as image, speech, text, etc. However, many 30 

research results suggest that gradient-based training of a deep neural network gets stuck in apparent 

local minima, which leads to poor results in practice (Bengio, 2009). Fortunately, the greedy layer-wise 

training algorithm proposed by Hinton et.al 2006 overcomes the optimization difficulty of deep 

networks effectively. The training processing of deep neural networks is divided into two steps. Firstly, 

unsupervised learning methods are employed to pre-train each layer parameters with the output of the 35 

previous layer as input, giving rise to initialize parameter values. After that, the gradient-based method 

is used to finely tune the whole neural network parameter values with respect to a supervised learning 

criterion as usual. The advantage of the unsupervised pre-training method at each layer can help guide 

the parameters of that layer towards better regions in parameter space(Bengio,2009).There are multiple 

types of deep learning neural network, such as convolutional neural networks, deep belief net and 40 

stacked Sparse Auto-encoders(sSAE). sSAE works very well in learning useful high-level feature for 

better representation of input raw data. Since sSAE learning algorithm can automatically learn even 

better feature representations than the hand-engineered ones, sSAE is used widely in many domains 

such as computer vision, audio processing, and natural language processing[Hinton,2006; Deng,J et 

al.,2013]. Similar to these problems, we need extract earth feature representation from dispersion of 45 

surface wave. Here we introduce Sparse Auto-encoder briefly, and detailed description of the network 

training method is given by Liu et al.(2015). 

The structure of sSAE is stacked by sparse auto-encoders to extract abstract features. A typical 

Sparse Auto-Encoder (SAE) can be seen as a neural network with three layers, as shown in Figure 1, 

including one input layer, one hidden layer, and one output layer. The input vector and the output 50 

vector are denoted by v and  v̂, respectively. The matrix W is associated with the connection between 

the input layer and the hidden layer. Similarly, the matrix W ̂connects the hidden layer to the output 

layer. The vector b and �̂� are the bias vectors associated with the units in the hidden layer and the 

output layer, respectively. The SAE is trained to encode the input vector v into some representation so 

that the input can be reconstructed from that representation. Let f(x) denote the activation function, and 55 

the activation vector of the hidden layer then is calculated (with an encoder) as: 

z=f(Wv+b),         (1) 
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where z is the encoding result and some representation for the input v. The representation z, or code is 

then mapped back (with a decoder) into a construction �̂� of the same shape as v. The mapping happens 

through a similar transformation, e.g.: 

�̂� = 𝑓(�̂�𝑧 + �̂�)                  (2) 

 5 

 
Figure 1.An auto-encoder with one hidden layer.(Liu etal.,2015) 

  

SAE is an unsupervised learning algorithm which sets the target values to be equal to the inputs and 

constrain output of hidden layer which are near to zero and most hidden layer are inactive, the cost 10 

function is expressed as: 

Jsparse(W, b) = J(W, b) + β ∑ ρlog
ρ

ρ̂j
+ (1 − ρ)log

1−ρ

1−ρ̂j

S2
j=1      (3) 

Here J(W, b) is cost function without sparsity constrain, β controls the weight of the sparsity penalty 

term,S2 is the number of neurons in the hidden layer, and the index j is summing over the hidden units 

in our network. ρ̂j is the average activation of hidden unit j,  ρ is a sparsity parameter, typically a small 15 

value close to zero. 

Further, a stacked Sparse Auto-Encoder (sSAE) is a neural network consisting of multiple layers of 

SAE in which SAE are stacked to form a deep neural network by feeding the representation of the SAE 

found on the layer below as input to the current layer. Using unsupervised pre-training methods, each 

layer is trained as sSAE by minimizing the error in reconstructing its input which is the output code of 20 

the previous layer. After all layers are pre-trained,  we add a logistic regression layer on top of the 

network, and then train the entire network by minimizing prediction error as we would train a 

traditional neural network. For example, a sSAE with two hidden layers is shown in Figure 2. This 

sSAE is composed of two SAEs.  The first SAE consists of the input layer and the first hidden layer, 

and the representation or code of the input v is h1 = f(W1v + b1). The second SAE comprises of two 25 

hidden layers, and the code of h1 is  h2 = f(W2h1 + b2). Each SAE is added to a decoder layer as 

shown in Figure 1, and we can then employ unsupervised pre-training methods to train each SAE by 

expression (1). Finally, the matrixW1,W2,bias vector b1 and b1are initialized. We then apply supervised 

fine-tuning methods to train entire network.  Since our aim is calculating crustal thickness and this is a 

regression problem, we attach a layer connected fully with last layer of the encoder part (the matrix Ws). 30 

After that, we train this network as done in a traditional neural network. 
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Figure 2.Stacked Sparse Auto-Encoder with two hidden layers. 

3 Inverting surface wave data for crustal thickness 

As Meier et al. (2007) demonstrated that the neural network approach for solving inverse problems 

is best summarized by three major steps as shown in Figure 3: (1) forward problem. In this stage we 5 

proceed by randomly sampling the model space and solve the forward problem for all visited models 

based on seismic wave normal mode theory. (2) designing a neural network structure. In this stage 

taking phase velocities with random noise as inputs and theoretical crustal thickness as outputs we train 

the deep learning neural networks and get an optimized one. (3) inverse problem. Base on trained 

networks we invert crustal thickness from observed phase velocities.  10 

In what follows we show how to train a sSAE deep learning neural networks to model surface wave 

dispersion based on synthetic seismogram, then invert dispersion curves based on the trained networks. 

Finally we compare our crustal model with other crustal thickness models, and discuss the geodynamic 

consequences implied by our model. 

 15 
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3.1 data preparation 

We closely follow the model parametrization  methodology outlined in de Wit et al. (2014), which 

is based on the Preliminary Reference Earth Model(PREM, Dziewonski and Anderson,1981)and is 5 

parameterized  on a discrete set of 185 grid points used by Mineos package(Masters et al., 2014). In 

addition, these models we have got show no correlations between physical parameters such as velocity, 

density, 𝜂 and attenuation profiles. As the model parametrization method mentioned above, we 

generate 100,000 synthetic models based on the 1-D reference models PREM, which are randomly 

drawn from the prior model distribution, also prior ranges for the various parameters in our model are 10 

given in tables A.2–A.4. of de Wit et al.(2014).We use the Mineos package  to compute phase velocity 

for fundamental mode Rayleigh waves for all 100,000 synthetic 1-D earth models. As for observation 

data used in stage of inversion below, phase velocities are more sensitive to the deep structure than 

group velocity. Based on Rayleigh wave phase velocity from ambient noise(Xie et.al,2013) shown in 

Figure 4 averaged from 10 to 35mHz,  we take these as inputs for our neural networks. 15 

Model parameter 

(crustal thickness) 

Earth model parameters 

space 

(velocity, density, crustal 

thickness, attenuation et.al) 

Data space 

(phase velocity of 

Rayleigh wave) 

stacked 

Sparse Auto-

encoders 

Neural 

Network 

normal mode 

theory 

Data space 

(observed phase 

velocity of Rayleigh) 

sSAE NN Forward Problem: 

sSAE NN Inverse Problem: 

Figure 3. Crustal thickness inversion based on sSAE neural network composed of two parts: 
Forward Problem and Inverse Problem. 
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3.2 training sSAE deep learning neural network 

As we all know, using a set of examples of corresponding input–output pairs, artificial neural 

networks can approximate an arbitrary non-linear function to solve the non-linear inverse problem. 5 

These examples are presented to a network in a so-called training process, during which the free 

parameters of a network are modified to approximate the function of interests (de Wit et al. 2014). Here 

adopting sSAE deep learning neural network, detailed methods presented in section 2 above, we pre-

train the neural network taking theoretical phase velocity of Rayleigh wave with random noise as 

inputs and theoretical crustal thickness as outputs to attain the initial weights and bias for neural 10 

network. And then we take theoretical phase velocity of Rayleigh wave with random noise as input, 

and crustal thickness as output to fine-tune neural network as done in a traditional neural network. 

How to find a satisfactory structure of neural network is a difficult problem because neural network 

training is sensitive to the random initialization of the network parameters. Therefore, as de Wit et al. 

(2014) pointed out that it is common practice to train several neural networks with different 15 

initializations, and subsequently choose the network which performs best on a given synthetic test data 

set, and the network which performed best on the test set is used to draw inferences from the observed 

data (de Wit et al. 2014). After trying many times, we find the proportion of training data set to test one 

is 3:1 is reasonable (Figure 5). We have got final test errors which may be produced not only by 

different neural network structure decided by the number of inputting neuron, hidden layers and neuron 20 

in middle layer, also optional parameters such as number of training epochs and size of batch. What’s 

more, type of activation function, value of learning rate, zero masked fraction, and value of non-

sparsity penalty can affect final test errors. We give twelve cases and their corresponding test errors in 

table 1. 

 25 

Figure 4.Averaged phase velocity of 

western Yangtze craton(Xie et al.,2013) 

from 10 to 35mHz.The black lines in the 

figure show structure lines. The blue lines 

show boundaries of sedimentary basins. 

The red dots show seismic events in this 

region from 1975 to 2015, and size of dot 

demonstrates size of magnitude from Ms 

6.0 to Ms 8.0. The yellow and purple stars 

demonstrate Wenchuan and Lushan 

earthquakes respectively. These are same to 

Figure 4, Figure 6 and Figure 7. 

 

Figure 5. The relationship between proportions of 

training data sets to test data sets and test errors. 
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3.3 inverting crust thickness 

Based on our all twelve neural networks, we invert Rayleigh phase velocities (10~35.0 mHz) to 

attain twelve crustal thickness models for eastern Tibet and western Yangtze craton. Considering not 

only the test errors of sSAE networks, also misfits and correlation coefficients of our twelve models 

with crustal thickness models from other researches, we select network structure given in table 1 shown 5 

in ※. We find the best fit crustal thickness model from sSAE (Figure 6).We compare our model with 

crustal thickness model from receiver function(Zhu et al.,2012),and the other two global crustal 

thickness models, CRUST2.0 from Bassin et al. (2000) based on refraction and reflection seismics as 

well as receiver function studies and the CUB2 model from Shapiro&Ritzwoller (2002)( Figure 7) who 

inverted a similar data set for crustal thickness using a Monte Carlo approach in the same region. The 10 

correlation coefficients and scatter plots of our model versus ZJS, our model versus CRUST2.0 and our 

model versus CUB2 (Figure 8) indicate that overall agreement between the three models. However, the 

agreements of our model with CUB2 and CRUST2.0 are better than with ZJS, since model ZJS attained 

from Zhu et.,al(2012) has relatively sparse stations with poor data coverage and lower resolution. 

Table1 deep learning neural network structures taking in this article 15 

 

sSAE Structure 
parameters Error 

×10-6 

CUB2 CRUST2.0 ZJS 

Layers D E F G H G H G H 

[21 50 10 1] Layer 1 0.3 10 1e4 262 7.29 0.79 7.68 0.80 9.12 0.71 

[21 50 10 1] Layer 1 0.3 10 1e3 79.5 7.52 0.77 8.00 0.76 8.42 0.73 

[21 50 10 1] Layer 1 0.3 10 1e2 27.83 7.29 0.78 7.32 0.79 7.98 0.72 

[21 50 10 1] Layer 1 0.3 100 1e3 28.83 7.44 0.78 7.13 0.80 7.89 0.71 

[21 50 10 1] Layer 1 0.3 100 1e2 11.29 7.34 0.79 6.61 0.82 7.79 0.68 

[21 50 10 1] Layer 1 0.01 100 1e2 11.28 7.33 0.79 6.61 0.81 7.79 0.68 

[21 10 2 1] Layer 1 0.01 100 1e2 15.73 7.08 0.79 6.67 0.82 7.91 0.68 

[21 100 50 20 1] Layer 1 0.5 100 1e2 8.35 7.37 0.79 6.64 0.82 7.53 0.68 

[21 200 50 20 10 
1] 

Layer 1 0.5 100 1e2 7.62 7.32 0.79 6.69 0.81 7.59 0.68 

[21 200 100 50 

20 10 5 1] ※ 
Layer 1 0.5 100 1e2 7.22 6.75 0.80 6.70 0.82 8.00 0.69 

[21 200 100 50 

20 10 5 1] 
Layer 1 0.5 100 50 4.58 7.79 0.79 8.45 0.84 10.7 0.65 

[21 50 40 30 20 

10 5 1] 
Layer 1 0.5 100 50 6.04 7.62 0.78 8.35 0.83 10.3 0.66 

 

In this article, we fixed the following three parameters in every situation: A-type of activation 

function(sigma); B-learning rate(1); C-zero masked fraction(0.5). 

Various parameters: D-non-sparsity penalty, which is zero except for layer 1 in every sASE structure; 20 

E-number of epochs; F-size of batch. 

G-RMS misfit of our result with other model;  H-correlation coefficient of our result with other model. 

※- selected sSAE neural network structure 
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Figure 8.(From left to right)  scatter plots of our model  versus ZJS, our model  versus  CRUST2.0 and our model  

versus CUB2  5 

 

4 Discussion 

On the one hand, our results show deep learning neural networks can invert crustal thickness 

effectively due to their owning capability to represent complex inverse functions: 

A deep neural network can offer improvement over a shallow neural network as shown in Table 10 

1.Test errors of deep learning neural network may be influenced by the number of hidden layer in 

networks which shows more hidden layers induce smaller test errors, which we can attain from Table 1 

when the number of hidden layer in networks adds from three to six, test error decreases from 2.6e-4 to 

6.0e-6. In addition, the robustness of deep learning neural networks is strong. When the number of 

hidden layers in network achieves six, changes of the number of neurons in each layer have little 15 

influence on test errors which is about 5.5e-6. 

In addition, we conclude that different training parameters have different effect on training results. 

We conclude that the size of batch is more important than epochs shown in Table 1.The size of batch 

decreases from 1e4 to 1e3 and test errors decrease from 2.6e-4 to 7.9e-5, however, Epochs increase 

from 10 to 100, corresponding test errors change a little. The neural network structure shown in ※ from 20 

table 1 reveals misfits of our model with model CUB2, CRUST2.0 and ZJS are relatively low with 

6.75,6.70 and 8.0, and corresponding correlation coefficients are relatively  high with 0.8, 0.82 and 

0.69 respectively, however, test error is 7.22e-6 and is not minimum. This tells us test error may be not 

the only criterion determining which neural network is best because small test error may be induced by 

Figure 6.Crustal thickness of western Yangtze 

craton from this paper. 
Figure 7.Crustal thickness of model 

CUB2 from Shapiro&Ritzwoller (2002) 
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overfitting.  

Compared with works of Meier et al.(2007), to enhance robustness of neural networks we add 

random noise into synthetic phase velocity as inputs in training progress. However, we have not 

considered about the uncertainty of crustal thickness which should be revealed by deep mixture density 

network in a probabilistic manner in our future work. 5 

On the other hand, we can attain the crustal thickness and resultant geodynamic consequences in 

research region from our result. We find the relatively good agreement of our result (Fig.6) with 

CUB2(Fig.7),CRUST2.0 (Fig.8). All these three models indicate that crustal thickness is deeper in the 

west of Longmen mountain than in the east of Longmen mountain. Moreover, our result reveals more 

details: the eastern Tibetan Plateau crustal thickness is complex and changes largely. The average crust 10 

thickness is about above 60km, especially about 70-75km at Qiangtang block, under which there is a 

northward-dipping moho gradient zone. There is relatively shallow crust at Songpa-Ganzi block and is 

characteristic of decreasing in northwest-southeast orientation. Model CUB2.0 tells us the crustal 

thickness of Sichuan basin is about 40km and is relatively smooth, however our model reveals there are 

some changes about crustal thickness in this region, which crustal thickness is thin around Chengdu 15 

especially northeastward to Chengdu, in addition there is about 50km thick crust under Qinlin-Dabei 

fold belt,also we can get that crustal thickness of northeast to Sichuan basin  is about 45~48km.What’s 

more, crustal thickness around Xi’an and Ordos basin is shallow about 35km. Conversely, change of 

crustal thickness in Sichuan-Yunnan block is sharp, where crustal thickness is 60km in northwest and 

35km in southeast. All detailed information is consistence with Wang et.al(2010)  who  attained the 20 

crustal thickness estimated by the H-k stacking method based on the broad band tele-seismic data 

recorded at 132 seismic stations in Longmen mountains and adjacent regions(26°~35°N,98°~109°E). 

From a geological viewpoint, The eastern Tibet and the western Yangtze craton has a very complex 

structure and tectonics, where several tectonic blocks, including the Yangtze Platform, the Songpan-

Ganzi Fold System, the Qiangtang Block, and the Indochina Block, are interacting with each other. It is 25 

a site of important processes associated with the India-Asia collision and abutment against the stable 

Yangtze Platform, including strong compressional deformation with crust shortening and thickening, 

the plateau surface has been elevated to 4-5 km, and the Tibetan crust has doubled in thickness since 

the collision [Chen ea al.,1996;Flesch et al., 2005;Wang,2010], east-west crustal extension, and strong 

earthquakes often occur on the active faults inside and on the edge of the plateau and are the most 30 

active seismic areas within the mainland. After analysing the distribution of the epicenters during 1970-

2015, we realize that great earthquakes in Sichuan and Yunnan have occurred in brittle upper crust in 

Longmen mountain fault zone, where crustal thickness changes sharply as to about 10km, and Ms 8.0 

Wenchuan earthquake in 2008 and Ms 7.0 Lushan earthquake in 2013 occurred, which are due to the 

reactions associated with the Songpan‐Ganzi Fold System and the Qiangtang Block obliquely colliding 35 

with the Yangtze Platform. The reason may be that main fault cut moho discontinuity where materials 

exchange between crust and mantle and accumulating press induce a series of earthquakes frequently.  

5 Conclusion and remarks 

Taking use of sSAE deep learning network, we present crustal thickness map of eastern Tibet and 

western Yangtze craton(Fig.7). The data sets consist of phase velocities of Rayleigh waves from 40 

Xie(2013) at discrete frequency of 10.0, 12.5, 15.0, 17.5, 20.0, 22.5, 25.0, 27.5, 30.0, 

32.5,35.0mHz.We conclude that: 

(1) For all our simulations we use sSAE with different neural network structures which are 

decided by many factors, for instance, the number of hidden layers and neurons in neural networks, 

the number of epoch, size of batch, type of activation function, values of learning rate and non-45 

sparsity penalty and so on. We find that parameters such as the number of hidden units and size of 

batch are crucial for training neural networks. 

(2) After inverting these twelve networks, different networks produced different results. When 

test errors achieve some value, misfits are high and correlation coefficients are low, which we think it 

is maybe caused by overfitting. This means networks fit well on training data set, but generalization 50 

ability does not increase. In our future work, we will focus on how to resolve this problem in using 

sSAE. 

(3) We present a crustal thickness model for eastern Tibet and western Yangtze craton. Compared 

our model with current knowledge about crustal structure as represented by ZJS,CRUST2.0, CUB2. 

The overall agreement with these three models is very good, and agreement is generally better with 55 

CUB2 and CRUST2.0 attained from relatively dense stations with rich data coverage and higher 

resolution.  

http://www.baidu.com/link?url=zzp1-0UbQMj9XvXt5Kj5HESfNSf0c6sBPbG4n78vdjRH_czmt5dyOUAUhbRu3sob4bs24rJ3VVhE6f-Z2-Ozb_M0t27A9WxQrX5dBXHVme_
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(4)  The results are obtained using a neural network approach called sSAE which is widely and 

successfully used in pattern recognition. As we all know, geophysical inversion is so complex that we 

should analysis and enhance neural network to apply to these complicated problems. 
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