We very much appreciate the overall positive attitude of the referee to our manuscript and thank him for particularly useful comments. The comments, questions and suggestions of the referee are presented in italics.

1) My general remark is about the statistics. According to the definition, the Poisson statistics is applicable to discrete specific types random quantities, see, for example, the Wikipedia: “In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant rate and independently of the time since the last event.” Can authors clarify, whether such statistics is applicable to continuously distributed random quantity such as wave amplitude? If there are any physics or any other reasoning why the Poisson statistics is the most appropriate for large-amplitude waves, whereas for small-amplitude waves the Gaussian statistics is more appropriate? Or this is just an empirical fact, and the Poisson distribution function is a convenient interpolation of data?

The wave amplitude series form the discrete row, nevertheless they are obtained from the continuous process (wave record) and the theoretical background for the statistics of outlets of continuous process is done as the first paragraph just after the Introduction based on (Gumbel, 1958; Stuart, 2001).

2) There are several awkward sentences in the text which should be rephrased. In particular, on page 8, line 19 – 20 (see remark in the attached manuscript). Somemore remarks are shown on the margins of the manuscript; they are self-explanatory.

We change sentences and rewrite text

3) I am certainly not a great expert in English, but it seems to me that the text should be polished.

We polished English