Interactive comment on “Application of ensemble transform data assimilation methods for parameter estimation in nonlinear problems” by Sangeetika Ruchi and Svetlana Dubinkina

Anonymous Referee #2

Received and published: 30 April 2018

This article presents a comparison between an EnKF and a particle filter based approaches for parameter estimation in a time independent model. I think that this comparison is relevant and can provide good insights about the performance of these two approaches in the context of parameter estimation. However I found many aspects that needs further clarification to support the conclusions made by the authors of this work. Major revisions are required to the paper.

Major points -It is not clear if Importance Sampling and particle filters can be treated as synonyms. From my point of view particle filters can include different approaches for particle resampling to avoid the collapse of the filter and this is different from Impor-
Distance Sampling which in principle does not include the resampling step.

-Page 2, 30 it is stated that particle filters do not update the uncertain parameters. This is not correct, many particle filters with different resampling approaches has been developed. These resampling steps introduce changes in the uncertain parameters so they get closer to the ones that produce the maximum observation likelihood, so the parameter ensemble evolves with time. It is true that the proposed technique performs this in a different way introducing a deterministic update of the parameter values (while usually resampling techniques in particle filters are stochastic). The difference between the implemented technique and previous techniques should be more clearly stated.

- In this work the implemented techniques are described as smoothers, however all the experiments performed are time independent. It is not clear for me what would be the difference between a filter or a smoother if there is no time involved. Please clarify this point. In the methodology I cannot find a difference between the filter implementation or the smoother implementation since there are no time index in the equations.

-Page 3, near 5: it is stated that ETKS does not employ the correlation in the estimation of the parameter. Filter equations are solved in the space defined by the ensemble members, but this implementation is basically equivalent to other EnKF which relies on the correlation between uncertain parameters and observed variables. Please clarify this point.

-Page 8, 5 an iterative Kalman Smoother is mentioned here and shown in Figure 1, but detailed information about this technique is lacking. I suggest removing this technique since it has not been used in the experiments with the Darcy flow and also it has not been described in detail in the methodology section.

-In Figure 1, d, e and f a Gaussian prior produces a non-Gaussian posterior using ETKS. Since the EnKF relies on the linear and Gaussian assumption is it possible to obtain a non-Gaussian posterior from a Gaussian prior? What is the motivation behind the functional introduced to define the observations in page 9, 15? What is r_l which appears in the definition of L_l(P)? Figure 6 shows the distribution for the first 3 modes of Z. Please clarify how these modes are obtained. Figure 8 shows that the RMSE
associated with ETKS is always lower than the RMSE for ETPS, however the first 3 moments of Z are better estimated by ETPS than for ETKS. Does this mean that ETKS provides a better estimation of higher order modes? -IS and ETKS provide spatially smoother solutions than ETPS (Figure 10), however ETPS seems to provide a better representation of the spatial variability and patterns of the parameter. The explanation provided by the authors is not convincing for me. IS with a large number of particles should provide a very good estimation of the parameters (this approach is used as a benchmark by the authors). Also the distribution for the first 3 moments of Z are relatively similar between ETPS, ETKS and IS (but the spatial variability shown in Figure 10 are very different). This point is very important and I think it should be explored and discussed in more detail. -The authors show that in many cases ETPS improves the fitting to the observations but degrades the RMSE of the parameter. Can this be due to an over fitting of the observations? -For the experiments including localization, the authors do not show the spatial distribution of the estimated parameters. This is very important since using localization can significantly improve the small scale details in the estimated parameter field. This figure should be included in order to better evaluate the impact of localization. It is also strange that there is almost no improvement between the global and local implementation of the ETKS algorithm. With such a large number of variables and for the smaller ensemble sizes a larger positive impact would be usually expected. -The degradation of the ETKS with a small ensemble size using localization is unexpected. The authors indicate that better localization approaches should be used but previous studies usually indicates that the impact of localization is stronger for smaller ensemble sizes. Are other works that shows this kind of behavior with localization degrading the performance of the filter for small ensemble sizes? -Page 16, before 5, it is stated that "However, IS does not change the parameters, only their weights, while ETPS does change the parameters. Therefore ETPS has an advantage of IS representing the correct posterior but does not have its disadvantage of resampling lacking". If the posterior is correct and taking into account that there is no time evolution in this context, what would be the problem with the lacking of resampling
in the IS? The results described in this section also suggest that the solutions provided by IS and ETPS are very similar given that the initial condition is the same (once again resampling does not seem to be an issue in this context).

-Does ETPS with 10^5 ensemble members produce a smooth field like the one produced by IS? In other words, the spatial variability that we see in Figure 10 b is produced by sampling errors or is the result of a better estimation of the parameter field? Results mentioned in the previous comment suggests that spatial variability is just a result of sampling noise and because of that is extremely sensitive to the prior ensemble. If we have a "lucky" prior then we end up with good results, but if the prior is bad then the result is also bad. In this sense ETKF seems to be more robust (which is reasonable when we need to update a large number of parameters with a relatively small ensemble and when the posterior distribution is not too far from a Gaussian).

-Conclusions, page 19, 5: It is stated that ETPS better fit the posterior. However if we look at Figure 6 we found that for 10^4 particles (which is a large ensemble for most applications), ETPS fit is very noisy. Can the authors perform and objective comparison between the posterior provided by IS and the posterior provided by ETPS and ETKS (for instance using the Kullback-Leibler divergence or other objective comparison between two distributions). -Conclusions: Conclusions are very optimistic with respect to the performance of ETPS, however the RMSE of ETKS is always better in the large parameter space experiments. This suggests that the mean of the posterior is better estimated by ETKS rather than ETPS. While the mean is usually used as the best estimator of the parameter value, this should be mentioned in the conclusions.

Minor points Page 12, 5: It is stated that is assumed to be an exponential correlation with maximum correlation along 3pi/4 ... It is not clear for me the meaning of this sentence. Page 7, 20: It is stated that R0 approximation is used with large ensembles in the experiments presented in this work, but in the result section it is not clear if this approximation has been used or not. Figure 10, It would be nice to include grid lines or to include the observation location in all the panels just to have a reference to compare smaller scale details in the estimated parameters.