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Abstract.  

In this paper, we rewrite the ACPW (adaptive cooperation co-evolution of parallel particle swarm optimization and wolf search 

algorithm based on principal component analysis) and applied it to solve conditional nonlinear optimal perturbation (CNOP) 

in the WRF-ARW for identifying sensitive areas of typhoon target observations, which is proposed by us in the study of Zhang 

et al. (2018), to investigate its feasibility and effectiveness in the WRF-ARW model. Fitow (2013) and Matmo (2014) are 15 

taken as two typhoon cases, and simulated with the 60-km horizontal resolution. The total dry energy is adopted as the objective 

function. The CNOP is also calculated by the method based on the adjoint model (ADJ method) as a benchmark. To evaluate 

the ACPW-CNOP, five aspects are analysed, such as the pattern, energy, similarity, benefits from the CNOPs reduced in the 

whole domain and the sensitive regions identified, and the simulated typhoon tracks. The experimental results show that the 

temperature and wind patterns of ACPW-CNOP is similar to those of the ADJ-CNOP in all typhoons. And the similarity values 20 

of ADJ-CNOP and ACPW-CNOP of two typhoon cases are more than 0.5. When reducing CNOPs in the sensitive regions, 

the forecast benefit of ACPW-CNOP is greater than that of ADJ-CNOP in all typhoons. Moreover, the sensitive regions 

identified by the ACPW-CNOP has the similar influence with the ADJ-CNOP on the simulation of typhoon tracks, sometimes 

the ACPW-CNOP has more positive impact on the simulation of typhoon tracks. The ACPW is more efficient than the ADJ 

method in this paper. 25 

1 Introduction 

Target observation is an effective way to improve the typhoon forecast skills, which is a study of the typhoon predictability 

(Franklin and Demaria, 1992; Bergot, 1999; Aberson, 2003). Conditional nonlinear optimal perturbation (CNOP) proposed by 

Mu and Duan (2003) is an effective method for studying the typhoon predictability (Mu and Duan, 2003). And many 

researchers use CNOP method to identify sensitive areas of typhoon target observations (TTOs). MM5 (The Fifth-Generation 30 

Mesoscale Model) model was adopted in the most of current studies of sensitive areas identification (Zhou and Mu, 2011; 



2 

 

Zhou and Mu, 2012a; Zhou and Mu, 2012b; Zhou and Zhang, 2014). Zhou and Mu (2011) investigated the affection of the 

different verification regions to the sensitive area identifications, and summarized that the little shift range and size of the 

verification regions will not affect the structure of CNOP. Zhou and Mu (2012a) also studied the affection of different 

horizontal resolutions and found that the higher resolution would show the more small-scale information of CNOP. They also 

researched the different dependency of integration times and regimes (2012b), and the solutions guided the future research. 5 

Zhou and Zhang (2014) studied three sensitive area identification schemes and recommended the vertically integrated energy 

scheme. 

However, the MM5 model is not updated and maintained after 2006. Nowadays, the popular mesoscale model is WRF-ARW 

(Advanced Research the Weather Research and Forecast) model. Recently, there is only one study which identify sensitive 

areas by using the WRF-ARW model (Yu et al., 2017). Yu et al. (2017) use the SPG2 (spectral projection gradient 2) algorithm 10 

(Ernesto et al., 2001) to solve CNOP. As we all know that the SPG2 algorithm must use the adjoint model to obtain the 

gradient information for updating the search direction. But the adjoint model of WRF-ARW only has one gravity dragging 

boundary layer parameterization scheme for such study, which limits the simulation of typhoon. In addition, when the 

horizontal resolution is higher than 30km, the gradient information calculated by the adjoint model has errors and omissions, 

which results in falling into the local optimum or optimization failure. Hence, an algorithm without using the adjoint model is 15 

needed.   

Wen et al. (2014) proposed a modified intelligent algorithm (IAs) called SAEP (simulated annealing-based ensemble 

projecting method) to solve CNOP in the Zebiak-Cane (ZC) (Zebiak and Cane, 1987) model for studying the ENSO predictions. 

PCGD (principal components-based great deluge) (Wen et al., 2015a), RGA (robust PCA-based genetic algorithm) (Wen et 

al., 2015b), CTS-SS (continuous Tabu search algorithm with sine maps and staged strategy) (Yuan et al., 2015), and PCAGA 20 

(principal component analysis-based genetic algorithm) (Mu et al., 2015b) also were proposed to do the same study. These 

algorithms were useful and effective. But it should be investigated that whether these algorithms can be used to solve CNOP 

in the MM5 model and WRF-ARW model for identifying sensitive areas of TTOs.  

Therefore, we adopted the PCAGA to solve CNOP in the MM5 model with the 120 km horizontal resolution. The experiments 

showed that PCAGA method was free of the adjoint model and obtained CNOP which had similar and meaningful physical 25 

patterns with the benchmark (adjoint-based method’s result). In addition, the CNOP obtained by PCAGA method have more 

positive influence over the forecast improvement than by adjoint-based method (called ADJ method for short). However, the 

PCAGA was not paralleled and its performance was not good. In our precious studies, the PPSO had better performance than 

the PCAGA, but it was easy to trap in local optimum. Hence, combined with the advantages of particle swarm optimization 

(PSO) and wolf search algorithm (WSA), we proposed a new modified algorithm, ACPW (adaptive cooperation co-evolution 30 

of parallel particle swarm optimization and wolf search algorithm based on principal component analysis) (Zhang et al., 2018). 

The ACPW was used to solve CNOP in the MM5 model with two horizontal resolutions, 60-km and 120 km. We compared 

the CNOP achieved by the ACPW with ADJ-CNOP, and the experimental results showed that the ACPW-CNOP had the 

similar patterns, high similarity, higher benefits, less time consumption and the same influence on the typhoon tracks 
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simulation. This type algorithms have not been applied to the WRF-ARW yet. WRF-ARW has more dimensions and more 

physical parameterizations than the MM5.  

Hence, in this paper, we rewrite the ACPW and applied it to solve CNOP in the WRF-ARW for identifying sensitive areas of 

typhoons adaptive observations. We take two typhoons as study cases, Fitow (2013) and Matmo (2014), and simulate them 

with the 60-km horizontal resolution. Similar to our previous study (Zhang et al., 2018), following the recommendation of 5 

Zhou and Zhang (2014), the total dry energy is adopted as the objective function. To evaluate the CNOPs from the ACPW 

method, we compare them with the benchmark in terms of the patterns, energies, similarities and benefits from the CNOPs 

reduced in the whole domain and sensitive regions, and the simulated typhoon tracks. All experimental results show that in the 

WRF-ARW model the ACPW method also is feasible and effective for solving CNOPs to identify the sensitive regions of 

TTOs. 10 

The rest of the paper is organized as follows. The brief description of CNOP and ACPW method is denoted in the section 2. 

Section 3 and section 4 are the parts of experiments, whose design is in the section 3 and analysis and results are in the section 

4. The last part about the conclusions is in section 5. 

2 CNOP and ACPW  

2.1 CNOP   15 

CNOP is an initial perturbation ζφ0
∗  of vector Φ0 (initial basic state) under the constrain condition ‖φ0‖2 ≤ ζ, if and only 

if  

 {
𝐽(𝜁𝜑0

∗) = 𝑚𝑎𝑥
‖𝜑0‖2≤𝜁

𝐽(𝜑𝑁𝑇)       

𝜑𝑁𝑇 = 𝑃𝑀(𝛷0 + 𝜁𝜑0) − 𝑃𝑀(𝛷0)
,  (1) 

where ζ is a constrained radius of an initial perturbation 𝜑0 We use 𝜁𝜑0 to represent the constrained initial perturbation.  

𝛷0 is an initial basic state and also a background field of a nonlinear numerical model. 𝜁𝜑0 is a type initial perturbation, which 20 

can be insert into the initial basic state 𝛷0. 𝑃 is a local numerical projection operator with setting 1 inside of the verification 

region and 0 outside, which is an operation of matrix multiplication. And the verification region is a key area considered by 

researchers, which is represented in Fig. 1. 𝑀 denotes a nonlinear numerical model.  

Figure 1 shows the schematic diagram of verification region, which is denoted by the red square, and when model has 

more than one vertical level, verification region of each level is the same. In addition, different cases have different verification 25 

regions. 

 𝛷𝑡 = 𝑀
𝑡0→𝑡

(𝛷0),  (2) 

𝛷𝑡 is the state of nonlinear evolution of 𝑀 from the initial time 𝑡0 to the predicted time 𝑡. Combined with the formula (2), the 

formula (1) means that the CNOP is the initial perturbation having largest nonlinear development, i.e. 𝐽(𝜁𝜑0
∗), when it is 

inserted into 𝛷0 and M evolves from the initial time 𝑡0 to the predicted time 𝑡 with the modified initial state (𝛷0 + 𝜁𝜑0). 𝐽 30 
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denotes the objective function of solving CNOP, and the detail of its computation is described in Section 3. Because, the detail 

of calculating 𝐽 would be different as the experimental design is different. 

 

We convert the objective function 𝐽(𝜁𝜑0
∗) to a problem of seeking minimum.  

 𝐽(𝜁𝜑0
∗) = 𝑚𝑖𝑛

‖𝜑0‖2≤𝜁
−𝐽(𝜑𝑁𝑇), (3) 5 

2.2 ACPW  

The ACPW method was proposed by Zhang et al. (2018), which is used to solve CNOP in the MM5 model for identifying the 

sensitive regions of TTOs. The ACPW has two points, one is the cooperation co-evolution of PSO and WSA, the other is the 

two adaptive subswarms. The details and pseudocode of ACPW is described in Table 1. And the control parameters of ACPW 

are list in Table 2.  10 

The update rules of the PSO and WSA are descripted in the following. 

The PSO use the classical formula (4) to update the individuals. 

  {
𝑣𝑖

𝑘+1 = 𝜔𝑣𝑖
𝑘 + 𝑐1𝛼(𝑜𝑖

𝑘 − 𝑢𝑖
𝑘) + 𝑐2𝛽(𝑜𝑔

𝑘 − 𝑢𝑖
𝑘)

𝑢𝑖
𝑘+1 = 𝑢𝑖

𝑘 + 𝛾𝑣𝑖
𝑘+1                     

 (4) 

where the superscript 𝑘  is the current iteration and 𝑘 + 1 is the next iterative step. 𝑣𝑖
𝑘+1  is the updating velocity of the 

individual 𝑢𝑖
𝑘. 𝜔 is the inertia coefficient. 𝑐1 is the learning factor for self-awareness to track the historically optimal position, 15 

and 𝑐2 for social-awareness of the particle swarm to track the globally. 𝛼 and 𝛽 are the random numbers uniformly distributing 

in (0, 1). 𝑜𝑖
𝑘 is the local optimum and 𝑜𝑔

𝑘 is the global optimum in the k𝑡ℎ iteration. 𝛾 is the restraint factor to control the speed. 

𝑢𝑖
𝑘+1 is the updated individual.  

There are two ways for updating individual in WSA, prey and escape, which represent the functions of searching in a local 

region and escaping from a local optimum.    20 

{
𝑢𝑖

𝑘+1 = 𝑢𝑖
𝑘 + 𝜃 ∙ 𝑟 ∙ 𝑟𝑎𝑛𝑑( )   𝑑𝑖𝑠𝑡(𝑢𝑖

𝑘, 𝑢𝑖
𝑘+1) < 𝑟. 𝑎𝑛𝑑. 𝐽(𝑢𝑖

𝑘) < 𝐽(𝑢𝑖
𝑘+1)

𝑢𝑖
𝑘+1 = 𝑢𝑖

𝑘 + 𝜃 ∙ 𝑠 ∙ 𝑒𝑠𝑐𝑎𝑝𝑒( )            𝑝 > 𝑝𝑎

  (5) 

where the superscript k or k + 1 is also the iterative step, θ is the velocity, r is the local optimizing radius, which smaller than 

the global constraint radius 𝛿. rand() is the random function, whose mean value distributed in [-1,1]. escape () is the function 

of calculating a random position, which is larger 3 times than r. s is the step size of the updating individual. p is a random 

number in [0,1], 𝑝
𝑎
 is the probability of individual escaping from the current position. 25 



5 

 

3 Experimental Design 

All the experiments are run on a Lenove Thinkserver RD430 with two Intel Xeon E5-2450 2.10 GHz CPUs, 32 logical cores 

and 132G RAM. And the operating system is CentOS 6.5. All the codes are written in FORTRAN language and compiled by 

PGI Compiler 10.2.  

3.1 The model and Data 5 

In this paper, we adopt the WRF-ARW model and its corresponding adjoint system (Zhang et al., 2013) to study the sensitive 

areas identification of TTOs. We produce the initial and boundary conditions by using the FNL (Final Analysis) data from 

NCEP (National Centers for Environmental Prediction) (NCEP, 2000) at 1º×1º and 6-h intervals. The physical 

parameterization schemes of the WRF-ARW are constructed as dry convective adjustment, the surface drag planetary boundary 

layer scheme, grid resolved large-scale precipitation and the Kuo cumulus parameterization scheme. We also use observed 10 

typhoon tracks (Ying et al., 2014) from the China Meteorological Administration (CMA) - Shanghai Typhoon Research 

Institute to evaluate the simulated typhoon tracks of the WRF-ARW model. 

3.2 Typhoons Fitow (2013) and Matmo (2014) 

We take two typhoons as the study cases, Fitow (2013) and Matom (2014). Fitow is the 23st typhoon of 2013, and develop on 

September 29 to the east of Philippines. On October 6, Fitow strikes China at Fuding in Fujian province, with a landfall 15 

pressure of 955 hPa. Typhoon Matmo (2014) is the 10th typhoon of 2014. It initially happened on July 17 and made landfall 

in Taiwan on July 22. In these two cases, a set of 24-h control forecasts, which served as basic state, are investigated from 

0000 UTC 5 Oct 2013 to 0000 UTC 6 Oct 2013 (Fitow), and from 1800 UTC 21 Jul 2014 to 1800 UTC 22 Jul 2014 (Matom). 

During these 24 hours, the maximum sustained winds up to 45 meters per second for typhoon Fitow and 42 meters per second 

for Matmo, before the typhoons hits land. For each case, the forecast is executed at a 60-km resolution with 21 vertical levels 20 

with the top pressure at 50hPa, and the model domain covers 55×55 grids. 

The simulated typhoon tracks of WRF-ARW model are presented in Fig. 2. The ability of the WRF-ARW model simulating 

these cases accurately are checked built on a 24-h simulation initialized at 0000 UTC 5 Oct 2013 and 1800 UTC 21 Jul 2014. 

Figure 2(a) shows the model simulated track of typhoon Fitow (hollow) runs a little faster than the observed track (solid) and 

moves to the south after 0012 UTC 05 Oct 2013. Figure 2(b) shows the model simulated track of typhoon Matmo (hollow) 25 

moves along the observed track (solid) but slightly faster, and after 6 hours has a little migration. All these errors are acceptable 

in this study. 

3.3 Experimental setup 

As the conducted physical parameterization schemes, we only focus on the dry physical process in this paper. Therefore, the 

initial perturbation 𝜁𝜑0 related to four dry physical characteristics, i.e., the perturbed zonal wind 𝑢0
′ , meridional wind 𝑣0

′ , 30 
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temperature 𝑇0
′ and surface pressure 𝑝𝑠0

′ . The objective function is calculated by the total dry energy (Zhou and Zhang, 2014) 

in formula (6). 

 𝐽(𝜑𝑁𝑇) =
1

𝐷
∫ ∫

1

2
(𝑢𝑡

′2 + 𝑣𝑡
′2 +

𝑐𝑝

𝑇𝑟
𝑇𝑡

′2) 𝑑𝜂𝑑𝐷
1

0𝐷
+

1

𝐷
∫ 𝑅𝑎𝑇𝑟 (

𝑝𝑠𝑡
′

𝑝𝑟
)

2

𝐷
𝑑𝐷,  (6) 

where ut
′, vt

′, Tt
′, 𝑝𝑠𝑡

′  are components of 𝜑𝑁𝑇 , which is the nonlinear development of perturbed 𝛷0 (i.e. 𝛷0 + 𝜁𝜑0) from the 

initial time 𝑡0 to the prediction time 𝑡. 𝜂 is the vertical coordinate.  𝐷 is the verification area. And other reference parameters 5 

with constant values are shown in Table 3. 

For optimizing conveniently, the objective function of solving CNOP in formula (3) can be expressed to formula (7): 

𝐽(𝜁𝜑0
∗) = 𝑚𝑖𝑛

‖𝜑0‖2≤𝜁
( −

1

𝐷
∫ ∫

1

2
(𝑢𝑡

′2 + 𝑣𝑡
′2 +

𝑐𝑝

𝑇𝑟
𝑇𝑡

′2) 𝑑𝜂𝑑𝐷
1

0𝐷
+

1

𝐷
∫ 𝑅𝑎𝑇𝑟 (

𝑝𝑠𝑡
′

𝑝𝑟
)

2

𝐷
𝑑𝐷）,      (7) 

4. Experimental Results and Analysis 

To verify the feasibility and validity of the ACPW in the WRF-ARW model, we compare CNOPs obtained with those from 10 

the ADJ method in terms of the pattern, energy, similarity, benefits from the CNOPs reduced in the whole domain and sensitive 

regions, as well as the simulated typhoon tracks. 

4.1 CNOP pattern 

The pattern is the most important standard among the evaluation standards for CNOP, especially the pattern of the vertical dry 

energy, because the sensitive areas are identified by the large energy.  15 

The CNOP patterns of ADJ-CNOP and ACPW-CNOP of the WRF-ARW are denoted in the Figures 3 and 4. Figure 3 is for 

typhoon Fitow, and typhoon Matmo is shown in Figure 4. The shaded parts represent the temperature and the vectors describe 

the wind. The patterns are the vertical level at 𝜂 = 0.7, i.e. the 500 hPa atmospheric layer, which is focused on by researchers 

generally. From the figures, we can find that the patterns of ACPW-CNOP is similar to those of the ADJ-CNOP in all typhoons. 

The distribution of warm and cold temperature zones is approximately the same, and the direction of wind vector is almost the 20 

same. Except for the CNOP patterns of ACPW are more dispersed and fragmented than those of ADJ method. 

As we use the total vertical dry energy to identify the sensitive regions of typhoons, the distribution of the vertical dry energy 

is presented in Figure 5 and Figure 6. And the figures show the area with the first 1.2% energy.  

For typhoon Fitow, the energy almost has the same position, which is distributed in the north side of the verification area. The 

difference is the ACPW-CNOP has another secondary part in the southeast side of the verification area. 25 

However, the energy position of ACPW-CNOP is different with the ADJ-CNOP for typhoon Matmo in Figure 6. The energy 

distribution of these two CNOPs are concentrated in two blocks, but the deviation of the position is large. The energy of ADJ-

CNOP is mainly distributed in the southwest and east side of the verification area. One major part in the east side is crescent-
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shaped with large power, and the other one in the southwest has smaller energy than the former. The energy of ACPW-CNOP 

distributes in the northwest and northeast of the verification area, which has the similar power.  

To sum it up, the distribution of CNOP pattern is more similar then that of the CNOP energy, and under the condition of the 

60-km resolution, the similarity of upon distribution is higher than those in the MM5 model of the paper published by Zhang 

et al. in 2018 (Zhang et al., 2018). 5 

In order to further analyze the similarity and the forecasting benefit of the identified sensitive region, the following numerical 

analysis experiments are carried out in this paper. 

4.2 Numerical similarity 

The numerical similarity between ACPW-CNOP and ADJ-CNOP is calculated by formula (8).  

 𝑆𝑥𝑦 =
〈𝑋,𝑌〉

√〈𝑋,𝑋〉√〈𝑌,𝑌〉
, (8) 10 

X and Y represent the vectors of CNOPs obtained from the ACPW and ADJ method. The similarity values are list in Table 4. 

0.61 is the similarity value of the two CNOPs of Typhoon Fitow, and 0.53 is for typhoon Matmo. Compare to the pattern 

similarity in Figures 3 and 4, the numerical similarity is smaller. It is because that the pattern is plotted by the values of one 

vertical level, while the numerical similarity is calculated by the all values of CNOP including all physical quantities and 

vertical levels. Even so, the similarity values also are more than 0.5. 15 

4.3 Benefits from reduction of CNOPs 

The experiments of this section include two parts: the forecasting benefits obtained by reducing CNOP to W × CNOP in the 

whole domain, i.e. the CNOP values of all grid points are reduced; the forecasting benefits from CNOP to W × CNOP is 

reduced only in the sensitive regions, i.e. the CNOP values of the sensitive grid points are reduced to 0.75 × CNOP, 0.5 × 

CNOP and 0.25 × CNOP.   20 

All experiments are based on two assumptions that:  

a. When adding target observations in the identified sensitive areas, the environment around is idealized, and the improvements 

of observations added are reducing original errors to 0.75, 0.5 and 0.25 times. 

b. CNOPs achieved by us can be seen as the optimal initial perturbations. Once we reduce them in the sensitive regions, the 

benefits earned will be the best.  25 

As mentioned in the subsection 4.1, the sensitive region is determined according to the first 1.2% of total vertical dry energy, 

as shown in Figures 5 and 6, which are the shadow zones in the figures. 

4.3.1 Reducing CNOP to W × CNOPs in the whole domain 

Figure 7 shows the forecasting benefits of reducing CNOP to W × CNOPs in the whole domain of ADJ-CNOP and ADJ-

CNOP. 30 
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From Figure 7, we can see that the forecasting benefits of ACPW-CNOP is greater than that of ADJ-CNOP in typhoon Fitow, 

while the result is opposite in typhoon Matmo. 

4.3.2 Reducing CNOP to W × CNOPs in the sensitive regions 

The sensitive regions of TTOs are identified by  upon strategy for selecting points, which are plotted in the Figures 5 and 6. 

The forecasting benefits are list in Table 5. 5 

From the numerical results in Table 5, it can be seen that the forecast benefit of ACPW-CNOP in the sensitive region is greater 

than that of ADJ-CNOP in all typhoons. Especially, the benefits of ACPW-CNOP are much larger than those of ADJ-CNOP, 

which is two orders of magnitude larger than the latter. In addition, when the W coefficient of ADJ-CNOP decreases gradually, 

the forecast benefit of ADJ-CNOP keeps basically unchanged, about 6.9% in typhoon Fitow and about 0.08% in typhoon 

Matmo. While the forecast benefit of ACPW-CNOP changes obviously. The benefit of typhoon Fitow is 10.2871%, 9.6823%, 10 

8.8120% respectively, and typhoon Matmo is 2.3484%, 3.5716% and 5.2212% respectively. 

4.4 Efficiency analysis 

As the efficiency analysis of solving CNOP in the MM5 model (Zhang et al., 2018), the time consumption of solving CNOP 

by ACPW belongs to the times of calling the nonlinear model. From the experiments, the time consumption of the nonlinear 

model of WRF-ARW is more than that of the MM5. Hence, we must consider the influence from the values of the control 15 

parameters of the ACPW, such as the number of principle components 𝑛′, the number of individuals N and the number of 

iterations Total_Step.  

In this subsection, we set several group values of upon three control parameters to investigate the time consumption of ACPW. 

The other parameters are the same as those in Table 2. The time consumption is list in Table 6 under the condition that the 

WRF-ARW model is run paralleled with 32 logical cores. In addition, the time consumption value is the average of four 20 

experiments. The average time consumption of ADJ method is 232.31 minutes. As the SPG2 needs to execute several times 

to find the best result, several different initial perturbations (also called first guess fields) are needed. In this paper, we use four 

first guess fields. And when we use the four first guess fields, the time consumption of ADJ method is up to 929.24 minutes. 

All the results are based on the Fitow case. The Matmo case has similar results. 

Eight group of control parameters and the experimental results are list in Table 6. For the experimental analysis, the number 25 

of principal components (PCs), which are selected dimensions of the feature space from the dimension reduction of Principal 

Component Analysis (PCA), has little effect on the time consumption, but has great influence on the adaptive value of objective 

function. The samples of PCA are from the difference of the different forecast states at the forecast time. In the WRF-ARW 

model, we get 551 samples and reduce the dimension from 2.5*105 to 30-60 with PCA. 

When the number of individuals and iteration steps remain unchanged but the dimension setting increases gradually, the 30 

adaptive value of objective function of ACPW-CNOP decreases gradually, referring to lines 5 and 7 of Table 6. This is due to 
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the increasing dimension needs more individual and iterations to optimize in the feature space, if not it will resulte in the 

method falling into a local optimum.  

It also can be seen that the time consumption of ACPW is proportional to the number of 𝑁 × 𝑇𝑜𝑡𝑎𝑙_𝑆𝑡𝑒𝑝. When the number 

of 𝑁 × 𝑇𝑜𝑡𝑎𝑙_𝑆𝑡𝑒𝑝 is the same, the time consumption of ACPW is almost the same. When the number of 𝑁 × 𝑇𝑜𝑡𝑎𝑙_𝑆𝑡𝑒𝑝 is 

increased, the time consumption also increases proportionally. Moreover, it is found that the increasing individuals does not 5 

make the objective function value larger in lines 1-3. In lines 2-4, the number of iterations is increased, the adaptive values get 

larger. In here, to understand conveniently, we list the positive objective function values in Table 6 while the outputs of the 

program are negative. We can conclude that the increasing iterations is beneficial to the optimization of the ACPW. 

For Table 6, it is found that the objective function values in lines 4 and 6 are more than 30000, and the corresponding time 

consumption is about 360 minutes. When we use the parameters of line 1, the objective function value is 28126.185933, which 10 

is little smaller than 30000, but its time consumption is only 89.83 minutes. And the identified sensitive areas are not much 

different. Therefore, we use the parameters in line 1 to do the experiments. When using the parameters in line 1 and the ADJ 

method using one first guess field, the speedup of the ACPW is 2.59. The time consumption of ADJ method divided by the 

time consumption of ACPW is the speedup of the ACPW. If the ADJ method uses four first guess fields, the speedup of the 

ACPW is 10.34. In this paper, the ACPW is more efficient than the ADJ method. 15 

 

4.5 Simulation of the typhoon tracks 

In order to investigate the validity of CNOP in identifying sensitive regions, we compare the 24-hour simulated typhoon track 

by adding CNOP or W × CNOP to the initial states. Similar to the benefits, there are two ways to modify the CNOP value: 

one is to reduce the CNOP value to 0.75, 0.5 and 0.25 times in the whole domain; the other is to reduce the CNOP value to 0.5 20 

times only in the sensitive regions of TTOs.  

In order to show the effect clearly, only two tracks are drawn in each sub-figure, one is the best typhoon track provided by 

CMA, and the other is the simulation track of the WRF-ARW model with different CNOPs, as shown in Figures 8 and 9. Since 

the difference of typhoon tracks simulated by the WRF-ARW model after adding modified CNOPs is very small, it is difficult 

to find them when they are displayed in the figures. Therefore, the experimental results of this part are also shown in Tables 7 25 

and 8. The larger values in the tables are longitude (E) and the smaller values are latitude (N). 

4.5.1 Simulated track analysis of adding CNOP modified in the whole domain 

Firstly, we analyze the simulated Fitow tracks of the WRF-ARW model after adding modified ADJ-CNOP to the initial state 

in the whole domain, and the results are showed in Figures 8 and 9.  

Combining with the tracks in Figure 8 and the data in Table 7, it can be seen that the tracks of typhoon Fitow have two 30 

differences. One is the position of simulated typhoon tracks at 1200 UTC 5 Oct, and the position with adding the whole ADJ-
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CNOP is different with that of adding another W×ADJ-CNOPs. The other difference is the position of 0.5×CNOP and 

0.25×CNOP at 1800 UTC 5 Oct. The other positions are the same. In addition, it is obvious that the Fitow track has great error 

after adding modified CNOPs to the initial state, which indicates that the quality of the initial state is deteriorated by CNOP, 

and the forecasting error is increased. 

Different to typhoon Fitow, all simulated tracks of typhoon Mamto are different, which are shown in Figure 9. The track data 5 

is list in Table 8. 

In the Figure 9, we can see that when the modified ADJ-CNOP is inserted into the initial state, the typhoon Matmo tracks 

simulated by the WRF-ARW model are closer to the observed track. The reason is that there is a big difference between the 

WRF-ARW simulated track and the observed track. It means that the quality of the initial state is not very well, and that results 

in a forecast error. The action of adding errors improves the initial state instead, which makes the forecasting track error smaller. 10 

This result also provides a new idea for the application of CNOP method in the typhoon track simulation research. 

Except the position at 1800 and 0000 UTC 21 Jul, the track data is all different, especially at 1800 UTC 22 Jul. For the  Figure 

9, when all CNOP is retained, the position at 1800 UTC 22 Jul is the furthest from the observed position, and as the decreased 

CNOP, it moves to the observed position. The results also prove the sensibility of CNOP. 

The influence of the ACPW-CNOP on the simulated typhoon track also is analyzed. The tracks are drawn in Figures 10 and 15 

11, and position data also is list in Tables 6 and 7. For typhoon Fitow, four sub-figures of the Figure 10 are the same, because 

the different ACPW-CNOPs have the same influence on the simulated typhoon tracks.  

For typhoon Matmo, there are two same sub-figures, i.e. Figure 11 (b) and (c), and two different sub-figures, i.e. Figure 11 (a) 

and (d). And the different position is the initial position at 1800 UTC 21 Jul and the end position at 1800 UTC 22 Jul. Moreover, 

the difference of data is little. 20 

Comparing the effects of ADJ-CNOP and ACPW-CNOP on typhoon track simulation, it is found that for Fitow case, the two 

CNOPs have the similar effect on typhoon track. While for Matmo case, the influence of ACPW-CNOP is less than that of 

ADJ-CNOP. The typhoon track generated by adding ACPW-CNOP is very close to that simulated track of the WRF-ARW 

model (Figure 2 (b)), but much closer to the observed typhoon track. 

4.5.2 Simulated track analysis of adding CNOP modified in the sensitive regions of TTOs 25 

After reducing CNOPs in the sensitive regions identified by ADJ method and ACPW, the typhoon tracks are showed in Figures 

12 and 13, which are simulated by the WRF-ARW model with adding modified CNOPs to the initial state. The strategy of 

reducing CNOP is change the values to 0.5 time only in the sensitive regions. The position data can be seen in Tables 7 and 8. 

In Fitow case, the sensitive regions identified by ACPW-CNOP and ADJ-CNOP have the similar influence on typhoon track 

simulation; in Matmo case, the sensitive regions identified by ACPW-CNOP have less influence than ADJ-CNOP, but when 30 

adding the observations in the sensitive regions, i.e. reducing the CNOP values in the sensitive regions, the simulated tracks 

are better than those simulated by the WRF-ARW model (Figure 2 (b)). 
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In conclusion, the sensitive regions identified by the ACPW-CNOP has the similar influence with the ADJ-CNOP on the 

simulation of typhoon tracks, sometimes the ACPW-CNOP has more positive impact on the simulation of typhoon tracks. 

5 Summaries and Conclusions 

In this paper, we rewrite the ACPW and applied it to solve CNOP in the WRF-ARW for identifying sensitive areas of TTOs, 

which is proposed by us in the study of Zhang et al. (2018), to investigate its feasibility and effectiveness in the WRF-ARW 5 

model. We take two typhoons as study cases, Fitow (2013) and Matmo (2014), and simulate them with the 60-km horizontal 

resolution. The total dry energy is adopted as the objective function. The CNOP is also calculated by the ADJ method as the 

benchmark. To evaluate the ACPW-CNOP, five aspects are analysed, such as the pattern, energy, similarity, benefits from the 

CNOPs reduced in the whole domain and the sensitive regions identified, and the simulated typhoon tracks. 

Based on the experimental results, the following conclusions can be drawn: 10 

(1) The temperature and wind patterns of ACPW-CNOP is similar to those of the ADJ-CNOP in all typhoons. The distribution 

of temperature zones and the direction of wind vector is almost the same. Except for the CNOP patterns of ACPW are more 

dispersed and fragmented than those of ADJ method. 

(2) The similarity values of ADJ-CNOP and ACPW-CNOP of two typhoon cases are more than 0.5. The Fitow is 0.61, and 

the Matmo is 0.53. 15 

(3) When reducing CNOPs in the whole domain, the forecasting benefits of ACPW-CNOP is greater than that of ADJ-CNOP 

in typhoon Fitow, while the result is opposite in typhoon Matmo. When reducing CNOPs in the sensitive regions, the forecast 

benefit of ACPW-CNOP is greater than that of ADJ-CNOP in all typhoons. 

(4) When ACPW uses the parameters in line 1 of Table 6 and the ADJ method uses one first guess field, the speedup of the 

ACPW is 2.59. If the ADJ method uses four first guess fields, the speedup of the ACPW is 10.34. The ACPW is more efficient 20 

than the ADJ method in this paper. 

(5) The sensitive regions identified by the ACPW-CNOP has the similar influence with the ADJ-CNOP on the simulation of 

typhoon tracks, sometimes the ACPW-CNOP has more positive impact on the simulation of typhoon tracks. 

Overall, the feasibility and effectiveness of ACPW is proved in the WRF-ARW model. 

To compare with the ADJ method, it is limited when we construct the physical parameterization schemes of WRF-ARW. 25 

Because the corresponding adjoint model only provides one physical parameterization scheme. And that may be the reason of 

bad simulated Fitow typhoon track. Since the ACPW method is free of the adjoint model, we will try more complicated 

physical parameterization schemes and improve the horizontal resolution to do such research. Moreover, ACPW can be used 

to solve CNOP in the numerical models no having adjoint model, such as GFDL (Geophysical Fluid Dynamics Laboratory) 

and CESM (Community Earth System Model). 30 
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Figure 1: The schematic diagram of verification region. The red square represents the verification region, m is the number of 

meridional grids and n is the number of zonal grids in horizontal grids. 

 

 5 

Figure 2: Simulated tracks of WRF-ARW model and typhoon observed tracks of CMA. Solid circles represent typhoon observed 

tracks of CMA, hollow circles show simulated tracks. (a) Fitow from 0000 UTC 5 Oct to 0000 UTC 6 Oct 2013. (b) Matmo from 1800 

UTC 21 Jul to 1800 UTC 22 Jul 214.  
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Figure 3: The CNOP patterns of Fitow at 𝜼 = 𝟎. 𝟕. The shaded parts represent the temperature (units: K) and the vectors describe 

the wind (units: ms-1). The squares draw the verification areas. (a) denotes the CNOP pattern of the ADJ method and (b) presents 

the ACPW. 

 5 

Figure 4: The CNOP patterns of Matmo at 𝜼 = 𝟎. 𝟕. The shaded parts represent the temperature (units: K) and the vectors 

describe the wind (units: ms-1). The squares draw the verification areas. (a) denotes the CNOP pattern of the ADJ method and (b) 

presents the ACPW. 
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Figure 5: Same as Figure 3, but the shaded parts represent the vertically integrated energies for Fitow (units: J kg-1), and the 

black virtual box represents the validation area.  

 

Figure 6: Same as Figure 4, but the shaded parts represent the vertically integrated energies for Fitow (units: J kg-1), and the 5 

black virtual box represents the validation area. 
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Figure 7: Benefits (percent, %) achieved by reducing CNOPs to W×CNOPs of ADJ and ACPW methods in the whole domain for 

typhoon Fitow (2013). The x-coordinate is the W coefficient values. And the y-coordinate denotes the benefits (percent, %) derived 

from the two methods. ADJ method is described as black line with squares and ACPW is red line with circles. 

 5 

Figure 8: Simulated typhoon tracks of WRF-ARW with adding ADJ-CNOP or W×ADJ-CNOP into the initial state in the whole 

domain for Fitow. Solid circles represent observed tracks of CMA, and hollow circles show the simulated tracks of the WRF-ARW 

model. (a), (b), (c) and (d) denote CNOP, 0.75×CNOP, 0.5×CNOP and 0.25×CNOP, respectively. 
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Figure 9: Simulated typhoon tracks of WRF-ARW with adding ADJ-CNOP or W×ADJ-CNOP into the initial state in the whole 

domain for Matmo. Solid circles represent observed tracks of CMA, and hollow circles show the simulated tracks of the WRF-ARW 

model. (a), (b), (c) and (d) denote CNOP, 0.75×CNOP, 0.5×CNOP and 0.25×CNOP, respectively. 
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Figure 10: Simulated typhoon tracks of WRF-ARW with adding ACPW-CNOP or W×ACPW-CNOP into the initial state in the 

whole domain for Fitow. Solid circles represent observed tracks of CMA, and hollow circles show the simulated tracks of the WRF-

ARW model. (a), (b), (c) and (d) denote CNOP, 0.75×CNOP, 0.5×CNOP and 0.25×CNOP, respectively. 
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Figure 11: Simulated typhoon tracks of WRF-ARW with adding ACPW-CNOP or W×ACPW-CNOP into the initial state in the 

whole domain for Matmo. Solid circles represent observed tracks of CMA, and hollow circles show the simulated tracks of the WRF-

ARW model. (a), (b), (c) and (d) denote CNOP, 0.75×CNOP, 0.5×CNOP and 0.25×CNOP, respectively. 

 5 

Figure 12: Simulated Fitow tracks of the WRF-ARW with adding modified CNOPs into the initial state. Solid circles represent 

observed typhoon tracks of CMA, and hollow circles show the simulated typhoon tracks of the WRF-ARW model. (a) is from ADJ 

method and (b) is ACPW method. 
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Figure 13: Simulated Matmo tracks of the WRF-ARW with adding modified CNOPs into the initial state. Solid circles represent 

observed typhoon tracks of CMA, and hollow circles show the simulated typhoon tracks of the WRF-ARW model. (a) is from ADJ 

method and (b) is ACPW method. 

  5 
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Table 1: The pseudocode of ACPW. 

Algorithm. ACPW 

Initialization: 

1: Set the parameters of ACPW in Table 2. 

ACPW: 

2: Randomly generate an initial perturbation swarm 𝑃0 = {𝑋1
𝑛′，𝑋2

𝑛′, ⋯ , 𝑋𝑁
𝑛′ }, where 𝑋𝑛′ =

{𝑥1, 𝑥2, ⋯ , 𝑥𝑛′}, 𝑥𝑖 ∈ [−1,1], 𝑖 = [1, 𝑛′], and 𝑛′ is the number of principal components selected; 

3: According to the adaptive coefficient α, divide the entire initial swarm 𝑃0 into two subswarms 

𝑃0
1 = {𝑋1

𝑛′，𝑋2
𝑛′, ⋯ , 𝑋𝑁∙𝛼

𝑛′ } and 𝑃0
2 = {𝑋𝑁−𝑁∙𝛼

𝑛′，𝑋𝑁−𝑁∙𝛼+1
𝑛′, ⋯ , 𝑋𝑁

𝑛′ }; 

4: WHILE 𝑡 < 𝑇𝑜𝑡𝑎𝑙_𝑆𝑡𝑒𝑝 DO; 

5:         𝑃𝑟𝑜𝑗𝑒𝑐𝑡(𝑋𝑡
𝑛′

, ζ)；Pull back the individual when it goes beyond the boundary, i.e., when 

‖𝑥𝑖‖ > 𝜁, then 𝑥𝑖 =
𝜁

‖𝑥𝑖‖
× 𝑥𝑖, ζ is the constrain condition in the formula (1); 

6:        𝐴𝑑𝑎𝑝𝑡𝐹𝑢𝑛(𝑃𝑖)；Calculate the adaptive value of the objective function parallelly, i.e., 

J(𝑥𝑖) in Eq. (1).  

7:         Compare the values of the objective function of all individuals and save the best one; 

8:      Calculate the difference of the best objective function values of generations 𝑃𝑡 and 𝑃𝑡−1,  

          If the difference is smaller than the threshold value ε, then 

change the adaptive coefficient α to α + 0.05,  

                     Else 

                            change the adaptive coefficient α to α − 0.05, 

                     End if 

    9:        Calculate the number of two subswarms by the new adaptive coefficient α; 

10:      Update the individuals of   𝑃𝑡
1 as the PSO rules; 

11:      Update the individuals of 𝑃𝑡
2 as the WSA rules; 

12: END WHILE  

Output: CNOP 

Table 2: The control parameters of ACPW. 

Name Meaning Value 

𝑛′ Number of principle components in Table 6 

N Number of individuals in Table 6 

a Adaptive coefficient Initial: 0.5 

ω Inertia coefficient 0.8 
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c1 Self-awareness to track the historically optimal position 2.05 

c2 
Social-awareness of the particle swarm to track the globally 

optimal position 
2.05 

ϒ Restraint factor to control the speed 0.729 

θ Velocity of individual moving 0.5 

r Local optimizing radius 
8×δ/original 

dimensions 

s Step size of updating individual 0.6 

pa Probability of individual escaping from current position 0.3 

Total_Step The number of iterations in Table 6 

Table 3: The meanings of all symbols 

Symbols Values/ components Meanings 

𝜁𝜑0 𝑢0
′ , 𝑣0

′ , 𝑇0
′, 𝑝𝑠0

′ , Initial perturbation 

𝜑𝑁𝑇  𝑢𝑡
′ , 𝑣𝑡

′, 𝑇𝑡
′, 𝑝𝑠𝑡

′  
Nonlinear evolution of 

perturbed 𝛷0 at time t 

𝐷 Values rely on cases Verification area 

𝜂 (0, 1] Vertical coordinate 

𝑐𝑝 1005.7 J kg−1 K−1 
Specific heat at  

constant pressure 

𝑅𝑎 287.04 J kg−1K−1 Gas constant of dry air 

𝑇𝑟 270K Constant parameter 

𝑝𝑟 1000hPa Constant parameter 

Table: 4 The numerical similarity between ACPW-CNOP and ADJ-CNOP 

ACPW&ADJ similarity 

Fitow 0.61 

Matmo 0.53 

Table 5: Benefits (percent, %) achieved by reducing CNOPs in the sensitive regions. 

Case Method 0.75 0.5 0.25 

Fitow ADJ 6.9169%  6.9699% 6.669%   

ACPW 10.2871%  9.6823%  8.812%  

Matmo ADJ 0.0809% 0.083% 0.0779% 

ACPW 2.3484% 3.5716% 5.2212% 

Table 6: the time consumption of ACPW for solving CNOP in the WRF-ARW model. 
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𝒏′ 𝑵 Total_Step Time 

(units: minutes) 

The adaptive value of 

objective function 

30 20 10 89.83 28126.185933 

30 40 10 179.55 27125.406996 

30 60 10 269.33 26708.582565 

30 40 20 359.79 30421.490441 

40 30 10 136.77 24525.656206 

40 40 20 360.43 31055.582842 

50 30 10 136.89 17137.857070 

60 30 10 137.23 14285.603508 

Table 7: The Fitow tracks of adding different CNOPs with the WRF-ARW model. The red number represents the different position 

at the same time point. 

Method/Fitow 

(2013) 

Time CNOP 0.75CNOP 0.5CNOP 0.25CNOP 0.5Sens 

ADJ 0000 UTC 5 

Oct 

127.618 

23.5222 

127.652 

24.0799 

127.652 

24.0799 

127.652 

24.0799 

127.652 

24.0799 

0600 UTC 5 

Oct 

126.43 

24.1385 

126.43 

24.1385 

126.43 

24.1385 

126.43 

24.1385 

126.43 

24.1385 

1200 UTC 5 

Oct 

125.207 

24.187 

125.819 

24.1641 

125.819 

24.1641 

125.819 

24.1641 

125.819 

24.1641 

1800 UTC 5 

Oct 

124.574 

23.6492 

124.574 

23.6492 

124.574 

23.6492 

124.595 

24.2075 

124.595 

24.2075 

0000 UTC 6 

Oct 

125.874 

21.1697 

125.874 

21.1697 

125.874 

21.1697 

125.874 

21.1697 

125.874 

21.1697 

ACPW 0000 UTC 5 

Oct 

127.652 

24.0799 

127.652 

24.0799 

127.652 

24.0799 

127.652 

24.0799 

127.652 

24.0799 

0600 UTC 5 

Oct 

126.43 

24.1385 

126.43 

24.1385 

126.43 

24.1385 

126.43 

24.1385 

126.43 

24.1385 

1200 UTC 5 

Oct 

125.819 

24.1641 

125.819 

24.1641 

125.819 

24.1641 

125.819 

24.1641 

125.819 

24.1641 

1800 UTC 5 

Oct 

124.595 

24.2075 

124.595 

24.2075 

124.595 

24.2075 

124.595 

24.2075 

124.574 

23.6492 
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0000 UTC 6 

Oct 

125.874 

21.1697 

125.874 

21.1697 

125.874 

21.1697 

125.874 

21.1697 

125.874 

21.1697 

Table 8: The Matmo tracks of adding different ADJ-CNOPs with the WRF-ARW model. The red number represents the different 

position at the same time point. 

Method/Matmo 

(2014) 
Time CNOP 0.75CNOP 0.5CNOP 0.25CNOP 0.5Sens 

ADJ 
1800 UTC 

21 Jul 

124.413 

19.193 

124.413 

19.193 

124.413 

19.193 

124.413 

19.193 

124.413 

19.193 

0000 UTC 

22 Jul 

123.876 

20.8786 

123.876 

20.8786 

123.876 

20.8786 

123.876 

20.8786 

123.876 

20.8786 

0600 UTC 

22 Jul 

122.696 

21.4631 

122.696 

21.4631 

123.31 

22.0081 

123.31 

22.0081 

122.696 

21.4631 

1200 UTC 

22 Jul 

122.708 

22.0207 

122.708 

22.0207 

122.72 

22.5785 

122.72 

22.5785 

122.708 

22.0207 

1800 UTC 

22 Jul 

122.72 

22.5785 

122.733 

23.1367 

122.733 

23.13 

122.745 

23.695 

122.72 

22.5785 

ACPW 
1800 UTC 

21 Jul 

124.433 

19.7486 

124.433 

19.7486 

124.433 

19.7486 

124.413 

19.193 

124.433 

19.7486 

0000 UTC 

22 Jul 

123.876 

20.8786 

123.876 

20.8786 

123.876 

20.8786 

123.876 

20.8786 

123.876 

20.8786 

0600 UTC 

22 Jul 

123.31 

22.0081 

123.31 

22.0081 

123.31 

22.0081 

123.31 

22.0081 

123.31 

22.0081 

1200 UTC 

22 Jul 

122.72 

22.5785 

122.72 

22.5785 

122.72 

22.5785 

122.72 

22.5785 

122.72 

22.5785 

1800 UTC 

22 Jul 

122.125 

23.1468 

122.135 

23.7051 

122.135 

23.7051 

122.135 

23.7051 

122.125 

23.1468 

 


