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Abstract.  

In this paper, we rewrite the ACPW (adaptive cooperation co-evolution of parallel particle swarm optimization and wolf 

search algorithm based on principal component analysis) and applied it to solve conditional nonlinear optimal perturbation 

(CNOP) in the WRF-ARW for identifying sensitive areas of typhoon target observations, which is proposed by us in the 

study of Zhang et al. (2018), to investigate its feasibility and effectiveness in the WRF-ARW model. Fitow (2013) and 15 

Matmo (2014) are taken as two typhoon cases, and simulated with the 60 km60-km horizontal resolution. The total dry 

energy is adopted as the objective function. The CNOP is also calculated by the method based on the adjoint model (ADJ-

methodADJ method) as a benchmark. To evaluate the ACPW-CNOP, five aspects are analysed, such as the pattern, energy, 

similarity, benefits from the CNOPs reduced in the whole domain and the sensitive regions identified, and the simulated 

typhoon tracks. The experimental results show that the temperature and wind patterns of ACPW-CNOP is similar to those of 20 

the ADJ-CNOP in all typhoons. And the similarity values of ADJ-CNOP and ACPW-CNOP of two typhoon cases are more 

than 0.5. When reducing CNOPs in the sensitive regions, the forecast incomebenefit of ACPW-CNOP is greater than that of 

ADJ-CNOP in all typhoons. Moreover, the sensitive regions identified by the ACPW-CNOP has the similar influence with 

the ADJ-CNOP on the simulation of typhoon tracks, sometimes the ACPW-CNOP has more positive impact on the 

simulation of typhoon tracks. The ACPW is more efficient than the ADJ-methodADJ method in this paper. 25 

1 Introduction 

Target observation is an effective way to improve the typhoon forecast skills, which is a study of the typhoon predictability 

(Franklin and Demaria, 1992; Bergot, 1999; Aberson, 2003). Conditional nonlinear optimal perturbation (CNOP) proposed 

by Mu and Duan (2003) is an effective method for studying the typhoon predictability (Mu and Duan, 2003). And many 

researchers use CNOP method to identify sensitive areas of typhoon target observations (TTOs). MM5 (The Fifth-30 

Generation Mesoscale Model) model was adopted in the Mmost of the current studies of sensitive areas identification adopt 
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the  (Zhou and Mu, 2011; Zhou and Mu, 2012a; Zhou and Mu, 2012b; Zhou and Zhang, 2014). Zhou and Mu (2011) 

investigated the affection of the different verification regions to the sensitive area identifications, and summarysummarized 

that the little shift range and size of the verification regions will not affect the structure of CNOP. Zhou and Mu (2012a) also 

study studied the affection of different horizontal resolutions and found that the higher resolution will would show the more 

small-scale information of CNOP. They also researched the different dependency of integration times and regimes (2012b), 5 

and the solutions guided the future research. Zhou and Zhang (2014) study studied three sensitive area identification schemes 

and recommended the vertically integrated energy scheme. . 

However, the MM5 model is not updated and maintained after 2006. Nowadays, the popular mesoscale model is WRF-ARW 

(Advanced Research the Weather Research and Forecast) model. Recently, there is only one study which to identify 

sensitive areas by using the WRF-ARW model (Yu et al., 2017Skamarock et al, 2008). Yu et al. (2017) use the SPG2 10 

(spectral projection gradient 2 (SPG2) algorithm (Ernesto et al., 2001) to solve CNOP, . As we all know that Tthe SPG2 

algorithm must use the adjoint model to obtain the gradient information for updating the search direction. but But the adjoint 

model of WRF-ARW only has one gravity dragging boundary layer parameterization scheme for such study, which limits 

the simulation of typhoon. In addition, when the horizontal resolution is higher than 30km, the gradient information 

calculated by the adjoint model has errors and omissions, which results in falling into the local optimum or optimization 15 

failure. Hence, , a methodn algorithm without using the adjoint model is needed. model is needed.  

Wen et al. (2014) proposed a modified intelligent algorithm (IAs) called SAEP (simulated annealing-based ensemble 

projecting method) to solve CNOP in the Zebiak-Cane (ZC) (Zebiak and Cane, 1987) model for studying the ENSO 

predictions. PCGD (principal components-based great deluge) (Wen et al., 2015a), RGA (robust PCA-based genetic 

algorithm) (Wen et al., 2015b), CTS-SS (continuous Tabu search algorithm with sine maps and staged strategy) (Yuan et al., 20 

2015), and PCAGA (principal component analysis-based genetic algorithm) (Mu et al., 2015b) also were proposed to do the 

same study. These methods algorithms were useful and effective. But it should be investigated that whether these methods 

algorithms can be used to solve CNOP in the MM5 model and WRF-ARW model for identifying sensitive areas of TTOs.  

Therefore, we adopted the PCAGA to solve CNOP in the MM5 model with the 120 km horizontal resolution. The 

experiments showed that PCAGA method was free of the adjoint model and also obtained CNOPs which had similar and 25 

meaningful physical patterns with the benchmark (adjoint-based method’s results). In addition, the CNOPs obtained by 

PCAGA method have more positive influences over the forecast improvement than by adjoint-based method (called ADJ 

method for short). However, the PCAGA was not paralleled and its performance is was worse than the PPSO in the ZC 

model.not good. In our precious studies, the PPSO had better performance than the PCAGA, but it was easy to trap in local 

optimum. Hence, , we combined with the advantages of particle swarm optimization (PSO) and and wolf search algorithm 30 

(WSA), and we proposed a new modified IAalgorithm, ACPW (adaptive cooperation co-evolution of parallel particle swarm 

optimization and wolf search algorithm based on principal component analysis) (Zhang et al., 2018). The ACPW was used to 

solve CNOP in the MM5 model with two horizontal resolutions, 60 km60-km and 120 km. We compared the CNOP 

achieved by the ACPW with ADJ-CNOP, and the experimental results showed that the ACPW-CNOP had the similar 
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patterns, high similarity, the higher benefits, less time consumption faster run time and the same influence on the typhoon 

tracks simulation. This type methods algorithms have not been applied to the WRF-ARW yet. WRF-ARW has more 

dimensions and more physical parameterizations than the MM5.  

Hence, in this paper, we rewrite the ACPW method and applied it to solve CNOP in the WRF-ARW for identifying sensitive 

areas of typhoons adaptive observations. We take two typhoons as study cases, Fitow (2013) and Matmo (2014), and 5 

simulate them with the 60 km60-km horizontal resolution. Similar to our previous study (Zhang et al., 2018), following the 

recommendation of Zhou and Zhang (2014),  the total dry energy is adopted as the objective function. To evaluate the 

CNOPs from the ACPW method, we compare them with the benchmark in terms of the patterns, energies, similarities and 

benefits from the CNOPs reduced in the whole domain and sensitive regions, and the simulated typhoon tracks. All 

experimental results show that in the WRF-ARW model the ACPW method also is feasible and effective for solving CNOPs 10 

to identify the sensitive regions of TTOs. 

The rest of the paper is organized as follows. The brief description of CNOP and ACPW method is denoted in the section 2. 

Section 3 and section 4 are the parts of experiments, whose design is in the section 3 and analysis and results are in the 

section 4. The last part about the conclusions is in section 5. 

2 CNOP and ACPW  15 

2.1 CNOP   

CNOP is an initial perturbation ζφ0
∗  of vector Φ0 (initial basic state) under the constrain condition ‖φ0‖2 ≤ ζ, if and 

only if   

 {
𝐽(𝜁𝜑0

∗) = 𝑚𝑎𝑥
‖𝜑0‖2≤𝜁

𝐽(𝜑𝑁𝑇)       

𝜑𝑁𝑇 = 𝑃𝑀(𝛷0 + 𝜁𝜑0) − 𝑃𝑀(𝛷0)
,  (1) 

Where where ζ is a constrained radius of an initial perturbation 𝜑0  We use 𝜁𝜑0  to represent the constrained initial 20 

perturbation.  𝛷0 is an initial basic state and also a background field of a nonlinear numerical model. 𝜁𝜑0 is a type initial 

perturbation, which can be insert into the initial basic state 𝛷0. 𝑃 is a local numerical projection operator with setting 1 

inside of the verification region and 0 outside, which is an operation of matrix multiplication. and And the verification region 

is a key area considered by researchers, which is represented in Fig. 1. 𝑀 denotes a nonlinear numerical model.  

Figure 1 shows the schematic diagram of verification region, which is denoted by the red square, and when model has 25 

more than one vertical level, verification region of each level is the same. In addition, different cases have different 

verification regions. 

 𝛷𝑡 = 𝑀
𝑡0→𝑡

(𝛷0),  (2) 

M denotes a nonlinear model and 𝛷𝑡  is the state of nonlinear evolutionpropagator  of 𝑀  from the initial time 𝑡0  to the 

predicted time 𝑡. Combined with the formula (2), the formula (1) means that the CNOP is the initial perturbation having 30 
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largest nonlinear development, i.e. 𝐽(𝜁𝜑0
∗), when it is inserted into 𝛷0 and M evolves from the initial time 𝑡0 to the predicted 

time 𝑡 with the modified initial state (𝛷0 + 𝜁𝜑0). 𝐽 denotes the objective function of solving CNOP, and the detail of its 

computation is described in Section 3. Because, the detail of calculating 𝐽 would be different as the experimental design is 

different. 

 5 

We convert the objective function 𝐽(𝜁𝜑0
∗) to a problem of seeking minimum.  

 𝐽(𝜁𝜑0
∗) = 𝑚𝑖𝑛

‖𝜑0‖2≤𝜁
−𝐽(𝜑𝑁𝑇), (3) 

2.2 ACPW  

The ACPW method was proposed by Zhang et al. (2018), which is used to solve CNOP in the MM5 model for identifying 

the sensitive regions of TTOs. The ACPW has two points, one is the cooperation co-evolution of PSO and WSA, the other is 10 

the two adaptive subswarms. The details and pseudocode of ACPW is described in Table 1. And the control parameters of 

ACPW are list in Table 2.  

The update rules elaborations of the PSO and WSA update rules were in the study of Zhang et al. in 2018 (Zhang et al., 

2018)are descripted in the following. 

The PSO use the classical formula (4) to update the individuals. 15 

  {
𝑣𝑖

𝑘+1 = 𝜔𝑣𝑖
𝑘 + 𝑐1𝛼(𝑜𝑖

𝑘 − 𝑢𝑖
𝑘) + 𝑐2𝛽(𝑜𝑔

𝑘 − 𝑢𝑖
𝑘)

𝑢𝑖
𝑘+1 = 𝑢𝑖

𝑘 + 𝛾𝑣𝑖
𝑘+1                     

    

  (54) 

where,  the  superscript 𝑘 is the current iteration and  𝑘 or 𝑘 + 1 is the next iterative step,. 𝑣𝑖
𝑘+1 is the updating velocity of 

the individual 𝑢𝑖
𝑘  and calculated by the first subformula. 𝜔 is is the inertia coefficient,. 𝑐1 is the learning factor for self-

awareness to track the historically optimal position, and 𝑐2 are the learning factorsfor social-awareness of the particle swarm 20 

to track the globally,. 𝛼 and 𝛽 are the random numbers uniformly distributing onin (0, 1) the interval from 0 to 1. 𝑜𝑖
𝑘 is the 

local optimum and 𝑜𝑔
𝑘 is the global optimum in the k𝑡ℎ iteration. 𝛾 is the restraint factor to control the speed. 𝑢𝑖

𝑘+1 is the 

updated individual with PSO.  

 

There are two ways for updating individual in WSA, prey and escape, which represent the functions of searching in a local 25 

region and escaping from a local optimum.    

{
𝑢𝑖

𝑘+1 = 𝑢𝑖
𝑘 + 𝜃 ∙ 𝑟 ∙ 𝑟𝑎𝑛𝑑( )   𝑑𝑖𝑠𝑡(𝑢𝑖

𝑘 , 𝑢𝑖
𝑘+1) < 𝑟. 𝑎𝑛𝑑. 𝐽(𝑢𝑖

𝑘) < 𝐽(𝑢𝑖
𝑘+1)

𝑢𝑖
𝑘+1 = 𝑢𝑖

𝑘 + 𝜃 ∙ 𝑠 ∙ 𝑒𝑠𝑐𝑎𝑝𝑒( )            𝑝 > 𝑝𝑎

  ( (65) 

where the superscript k or k + 1 is also the iterative step, θ is the velocity, r is the local optimizing radius, which smaller 

than the global constraint radius 𝛿. rand() is the random function, whose mean value distributed in [-1,1]. escape () is the 
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function of calculating a random position, which is larger 3 times than r. s is the step size of the updating individual. p is a 

random number in [0,1], 𝑝
𝑎
 is the probability of individual escaping from the current position. 

 

The elaborations of the PSO and WSA update rules were in the study of Zhang et al. in 2018 (Zhang et al., 2018). 

3 Experimental Design 5 

All the experiments are run on a Lenove Thinkserver RD430 with two Intel Xeon E5-2450 2.10 GHz CPUs, 32 logical cores 

and 132G RAM. And the operating system is CentOS 6.5. All the codes are written in FORTRAN language and compiled by 

PGI Compiler 10.2.  

3.1 The model and Data 

In this paper, we adopt the WRF-ARW model and its corresponding adjoint system (Zhang et al., 2013) to study the 10 

sensitive areas identification of TTOs. We produce the initial and boundary conditions by using the FNL (Final Analysis) 

data from NCEP (National Centers for Environmental Prediction) (NCEP, 2000) at 1º×1º and 6-h intervals. The physical 

parameterization schemes of the WRF-ARW are constructed as dry convective adjustment, the surface drag planetary 

boundary layer scheme, grid resolved large-scale precipitation and the Kuo cumulus parameterization scheme. We also use 

observed typhoon tracks (Ying et al., 2014) from the China Meteorological Administration (CMA) - Shanghai Typhoon 15 

Research Institute to evaluate the simulated typhoon tracks of the WRF-ARW model. 

3.2 Typhoons Fitow (2013) and Matmo (2014) 

We take two typhoons as the study cases, Fitow (2013) and Matom (2014). Fitow is the 23st typhoon of 2013, and develop 

on September 29 to the east of Philippines. On October 6, Fitow strikes China at Fuding in Fujian province, with a landfall 

pressure of 955 hPa. Typhoon Matmo (2014) is the 10th typhoon of 2014. It initially happened on July 17 and made landfall 20 

in Taiwan on July 22. In these two cases, a set of 24-h control forecasts, which served as basic state, are investigated from 

0000 UTC 5 Oct 2013 to 0000 UTC 6 Oct 2013 (Fitow), and from 1800 UTC 21 Jul 2014 to 1800 UTC 22 Jul 2014 

(Matom). During these 24 hours, the maximum sustained winds up to 45 meters per second for typhoon Fitow and 42 meters 

per second for Matmo, before the typhoons hits land. For each case, the forecast is executed at a 60-km resolution with 21 

vertical levels with the top pressure at 50hPa, and the model domain covers 55×55 grids. 25 

The simulated typhoon tracks of WRF-ARW model are presented in Fig. 2. The ability of the WRF-ARW model simulating 

these cases accurately are checked built on a 24-h simulation initialized at 0000 UTC 5 Oct 2013 and 1800 UTC 21 Jul 2014. 

Figure 2(a) shows the model simulated track of typhoon Fitow (hollow) runs a little faster than the observed track (solid) and 

moves to the south after 0012 UTC 05 Oct 2013. Figure 2(b) shows the model simulated track of typhoon Matmo (hollow) 
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moves along the observed track (solid) but slightly faster, and after 6 hours has a little migration. All these errors are 

acceptable in this study. 

3.3 Experimental setup 

As the conducted physical parameterization schemes, we only focus on the dry physical process in this paper. Therefore, the 

initial perturbation 𝜁𝜑0 related to four dry physical characteristics, i.e., the perturbed zonal wind 𝑢0
′ , meridional wind 𝑣0

′ , 5 

temperature 𝑇0
′ and surface pressure 𝑝𝑠0

′ . The objective function is calculated by the total dry energy (Zhou and Zhang, 2014) 

in formula (46). 

 𝐽(𝜑𝑁𝑇) =
1

𝐷
∫ ∫

1

2
(𝑢𝑡

′2 + 𝑣𝑡
′2 +

𝑐𝑝

𝑇𝑟
𝑇𝑡

′2) 𝑑𝜂𝑑𝐷
1

0𝐷
+

1

𝐷
∫ 𝑅𝑎𝑇𝑟 (

𝑝𝑠𝑡
′

𝑝𝑟
)

2

𝐷
𝑑𝐷,  (46) 

where ut
′, vt

′, Tt
′, 𝑝𝑠𝑡

′  are components of 𝜑𝑁𝑇 , which is the nonlinear development of perturbed 𝛷0 (i.e. 𝛷0 + 𝜁𝜑0) from the 

initial time 𝑡0 to the prediction time 𝑡. 𝜂 is the vertical coordinate.  𝐷 is the verification area. And other reference parameters 10 

with constant values are shown in Table 3. 

 

For optimizing conveniently, the formula objective function of solving CNOP in formula (3) can be expressedtransformed to 

solve a minimization problem, as followsformula (7): 

𝐽(𝜁𝜑0
∗) = 𝑚𝑖𝑛

‖𝜑0‖2≤𝜁
( −

1

𝐷
∫ ∫

1

2
(𝑢𝑡

′2 + 𝑣𝑡
′2 +

𝑐𝑝

𝑇𝑟
𝑇𝑡

′2) 𝑑𝜂𝑑𝐷
1

0𝐷
+

1

𝐷
∫ 𝑅𝑎𝑇𝑟 (

𝑝𝑠𝑡
′

𝑝𝑟
)

2

𝐷
𝑑𝐷）,      (57) 15 

4. Experimental Results and Analysis 

To verify the feasibility and validity of the ACPW in the WRF-ARW model, we compare CNOPs obtained with those from 

the ADJ-methodADJ method in terms of the pattern, energy, similarity, benefits from the CNOPs reduced in the whole 

domain and sensitive regions, as well as the simulated typhoon tracks. 

4.1 CNOP pattern 20 

The pattern is the most important standard among the evaluation standards for CNOP, especially the pattern of the vertical 

dry energy, because the sensitive areas are identified by the large energy.  

The CNOP patterns of ADJ-CNOP and ACPW-CNOP of the WRF-ARW are denoted in the Figures 3 and 4. Figure 3 is for 

typhoon Fitow, and typhoon Matmo is shown in Figure 4.  . The shaded parts represent the temperature and the vectors 

describe the wind. The patterns are the vertical level at 𝜂 = 0.7, i.e. the 500 hPa atmospheric layer, which is focused on by 25 

researchers generally. From the figures, we can find that the patterns of ACPW-CNOP is similar to those of the ADJ-CNOP 

in all typhoons. The distribution of warm and cold temperature zones is approximately the same, and the direction of wind 
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vector is almost the same. Except for the CNOP patterns of ACPW are more dispersed and fragmented than those of ADJ-

methodADJ method. 

As we use the total vertical dry energy to identify the sensitive regions of typhoons, the distribution of the vertical dry energy 

is presented in Figure 5 and Figure 6. And the figures show the area with the first 1.2% energy.  

For typhoon Fitow, the energy almost has the same position, which is distributed in the north side of the verification area. 5 

The difference is the ACPW-CNOP has another secondary part in the southeast side of the verification area. 

However, the energy position of ACPW-CNOP is different with the ADJ-CNOP for typhoon Matmo in Figure 6. The energy 

distribution of these two CNOPs CNOPs are concentrated in two blocks, but the deviation of the position is large. The 

energy of ADJ-CNOP is mainly distributed in the southwest and east side of the verification area. One major part in the east 

side is crescent-shaped with large power, and the other one in the southwest has smaller energy than the former. The energy 10 

of ACPW-CNOP distributes in the northwest and northeast of the verification area, which has the similar power.  

To sum it up, the distribution of CNOP pattern is more similar then that of the CNOP energy, and under the condition of the 

60-km resolution, the similarity of upon distribution is higher than those in the MM5 model of the paper published by Zhang 

et al. in 2018 (Zhang et al., 2018). 

 15 

In order to further analyze the similarity and the forecasting benefit of the identified sensitive region, the following 

numerical analysis experiments are carried out in this paper. 

4.2 Numerical similarity 

The numerical similarity between ACPW-CNOP and ADJ-CNOP is calculated by formula (68).  

 𝑆𝑥𝑦 =
〈𝑋,𝑌〉

√〈𝑋,𝑋〉√〈𝑌,𝑌〉
, (68) 20 

X and Y represent the vectors of CNOPs obtained from the ACPW and ADJ-methodADJ method. The similarity values are 

list in Table 4. 

0.61 is the similarity value of the two CNOPs of Typhoon Fitow, and 0.53 is for typhoon Matmo. Compare to the pattern 

similarity in Figures 3 and 4, the numerical similarity is smaller. It is because that the pattern is plotted by the values of one 

vertical level, while the numerical similarity is calculated by the all values of CNOP including all physical quantities and 25 

vertical levels. Even so, the similarity values also are more than 0.5. 

4.3 Benefits from reduction of CNOPs 

The experiments of this section include two parts: the forecasting benefits obtained by reducing CNOP to W × CNOP in the 

whole domain, i.e. the CNOP values of all grid points are reduced; the forecasting benefits from CNOP to W × CNOP is 

reduced only in the sensitive regions, i.e. the CNOP values of the sensitive grid points are reduced to 0.75 × CNOP, 0.5 × 30 

CNOP and  and 0.25 × CNOP.   
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All experiments are based on two assumptions that:  

a. When adding target observations in the identified sensitive areas, the environment around is idealized, and the 

improvements of observations added are reducing original errors to 0.75, 0.5 and 0.25 times. 

b. CNOPs achieved by us can be seen as the optimal initial perturbations. Once we reduce them in the sensitive regions, the 

benefits earned will be the best.  5 

As mentioned in the subsection 4.1, the sensitive region is determined according to the first 1.2% of total vertical dry energy, 

as shown in Figures 5 and 6, which are the shadow zones in the figures. 

4.3.1 Reducing CNOP to W × CNOPs in the whole domain 

Figure 7 shows the forecasting benefits of reducing CNOP to W × CNOPs in the whole domain of ADJ-CNOP and ADJ-

CNOP. 10 

From Figure 7, we can see that the forecasting benefits of ACPW-CNOP is greater than that of ADJ-CNOP in typhoon Fitow, 

while the result is opposite in typhoon Matmo. 

4.3.2 Reducing CNOP to W × CNOPs in the sensitive regions 

The sensitive regions of TTOs are identified by the  upon strategy for selecting points, which are plotted in the Figures 5 and 

6. The forecasting benefits are list in Table 5. 15 

From the numerical results in Table 5, it can be seen that the forecast incomebenefit of ACPW-CNOP in the sensitive region 

is greater than that of ADJ-CNOP in all typhoons. Especially, the benefits of ACPW-CNOP are much larger than those of 

ADJ-CNOP, and which is two orders of magnitude larger than the latter.the gap is two orders of magnitude. In addition, 

when the W coefficient of ADJ-CNOP decreases gradually, the forecast incomebenefit of ADJ-CNOP keeps basically 

unchanged, about 6.9% in typhoon Fitow and about 0.08% in typhoon Matmo. While the forecast benefit of ACPW-CNOP 20 

changes obviously. The benefit value of typhoon Fitow is 10.2871%, 9.6823%, 8.8120% respectively, and typhoon Matmo is 

2.3484%, 3.5716% and 5.2212% respectively. 

4.4 Efficiency analysis 

As the efficiency analysis of solving CNOP in the MM5 model (Zhang et al., 2018), the time consumption of solving CNOP 

by ACPW belongs to the times of calling the non-linear model. From the experiments, the time consumption of the non-25 

linear model of WRF-ARW is more than that of the MM5. Hence, we must consider the influence from the values of the 

control parameters of the ACPW, such as the number of principle components components 𝑛′, the number of individuals N 

and the number of iterations Total_Step.  

In this subsection, we set several group values of upon three control parameters to investigate the time consumption of 

ACPW, and. the The other parameters are the same to as those in Table 2. The time consumption The running time is list in 30 
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Table 6 under the condition of that the WRF-ARW model is run paralleled ning WRF-ARW with 32 logical cores parallelly. 

In addition, the time consumption value the running time is the average value of four experiments under the same conditions. 

The average time consumptionrunning time of ADJ method is 232.31 minutes, . As the SPG2 needs to execute several times 

to find the best result, several different initial perturbations (also called first guess fields) are needed. In this paper, we use 

four first guess fields. And when we use the four first guess fields, and the time consumption total running time of ADJ 5 

method using four initial first guess fields is up to 929.24 minutes. All the results are based on the Fitow case. The Matmo 

case has similar results. 

Eight representative group of control parameters and the experimental results are list in Table 6. Forrom the experimental 

analysis, the number of principal components (PCs), i.e. which are selected dimensions of the feature space from the 

dimension reduction of Principal Component Analysis (PCA), has little effect on the time consumption running time, but has 10 

great influence on the adaptive value of objective function. The samples of PCA are from the difference of the different 

forecast states at the forecast time. In the WRF-ARW model, we get 551 samples and reduce the dimension from 2.5*105 to 

30-60 with PCA.. 

When the number of individuals and iteration steps remain unchanged but the dimension setting increases gradually, the 

adaptive value of objective function of ACPW-CNOP decreases gradually, referring to lines 5 and 7 of Table 6. This is due 15 

to the increasing dimension needs more individual and iterations to optimize in the feature space, if not it will resulte in the 

method falling into a local optimum.  

It also can be seen that the running timetime consumption of ACPW is proportional to the number of 𝑁 × 𝑇𝑜𝑡𝑎𝑙_𝑆𝑡𝑒𝑝. 

When the number of 𝑁 × 𝑇𝑜𝑡𝑎𝑙_𝑆𝑡𝑒𝑝 is the same, the running timetime consumption of ACPW is almost the same. When 

the number of 𝑁 × 𝑇𝑜𝑡𝑎𝑙_𝑆𝑡𝑒𝑝 is increased, the running time consumption also increases proportionally. Moreover, , from 20 

line 1 to line 3 of the values, it is found that the increasing individuals does not make the objective function value larger in 

lines 1-3increase the adaptive values. In lines 2-4,From line 2 and line 4 of the values, the number of iterations is increased, 

the adaptive values increaseget larger. In here, to understand conveniently, we list the positive objective function values in 

Table 6 while the outputs of the program are negative. We We can conclude that the increasing iterations is beneficial to the 

optimization of the ACPW. 25 

Observing the adaptive valuesFor Table 6, it is found that the objective function values of in lines 4 and  line 6 are more than 

30000, and the corresponding running timetime consumption is about 360 minutes. When we use the parameters of line 1, 

the adaptive objective function value is 28126.185933, which is little smaller than 30000, but its time consumptionrunning 

time is only 89.83 minutes, and the benefits are in Figures 7. And the identified sensitive areas are not much different.  

Therefore, we use the parameters in line 1 to do the experiments. we can set some small number of the control parameters to 30 

do the experiments. When using the parameters in line 1 and the ADJ-methodADJ method using one first guess field, the 

speedup of the ACPW is 2.59. The time consumption of ADJ method divided by the time consumption of ACPW is the 

speedup of the ACPW..  If If the ADJ- method uses four first guess fields, the speedup of the ACPW is 10.34. In this paper, 

the ACPW is more efficient than the ADJ-methodADJ method. 
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4.5 Simulation of the typhoon tracks 

In order to investigate the validity of CNOP in identifying sensitive regions, we compare the 24-hour simulated typhoon 

track by adding CNOP or W × CNOP to the initial states. Similar to the benefits, there are two ways to modify the CNOP 

value: one is to reduce the CNOP value to 0.75, 0.5 and 0.25 times in the whole domain; the other is to reduce the CNOP 5 

value to 0.5 times only in the sensitive regions of TTOs.  

In order to show the effect clearly, only two tracks are drawn in each sub-figure, one is the best typhoon track provided by 

CMA, and the other is the simulation track of the WRF-ARW model with different CNOPs, as shown in Figures 8 and 9. 

Since the difference of typhoon tracks simulated by the WRF-ARW model after adding modified CNOPs is very small, it is 

difficult to find them when they are displayed in the figures. Therefore, the experimental results of this part are also shown in 10 

Tables 7 and 8 in a numerical way. The larger values in the tables are longitude (E) and the smaller values are latitude (N). 

4.5.1 Simulated track analysis of adding CNOP modified in the whole domain 

Firstly, we analyseanalyze the simulated Fitow tracks of the WRF-ARW model after adding modified ADJ-CNOP in the 

whole domain to the initial state in the whole domain, and the results are shown showed in Figures 8 and 9.  

Combining with the tracks in Figure 8 and the data in Table 7, it can be seen that the tracks of typhoon Fitow has have 15 

twolittle differences, which is simulated by the WRF-ARW model after reducing the value of CNOP in the whole domain 

and adding it on the initial state. One difference. One is the position of simulated typhoon tracks at 1200 UTC 5 Oct. , Only 

and the position with adding the whole ADJ-CNOP is different with that of adding another W×ADJ-CNOPs. . The other The 

second difference is the position of 0.5×CNOP and 0.25×CNOP at 1800 UTC 5 Oct. The other positions are the same. In 

addition, it is obvious that the Fitow track has great error after adding modified CNOPs to the initial state, which indicates 20 

that the quality of the initial state is deteriorated by CNOP superimposition, and the forecasting error is increased. 

 

Different to typhoon Fitow, all simulated tracks of typhoon Mamto are different, which are shown in Figure 9. The track data 

is list in Table 8. 

In the Figure 9, we can see that when the modified ADJ-CNOP is inserted into the initial state, the typhoon Matmo tracks 25 

simulated from by the WRF-ARW model are closer to the observed track by inserting the modified ADJ-CNOP to the initial 

state, which is only simulated by the WRF-ARW of Figure 2 (b). The reason is that there is a big difference between the 

WRF-ARW simulated track and the observed track. That is to say, It means that the quality of the initial state is not very 

well, which and that results in a forecast error. The action of adding errors improves the initial state instead, which makes the 

forecasting track error smaller. This result also provides a new idea for the application of CNOP method in the typhoon track 30 

simulation research. 
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Except the position at 1800 and 0000 UTC 21 Jul, the track data is all different, especially at 1800 UTC 22 Jul. Analysis 

combining withFor the  Figure 9, when all CNOP is retained, the position at 1800 UTC 22 Jul is the furthest from the 

observed position, and as the decreased CNOP, it moves to the observed position. The results also prove the sensibility of 

CNOP. 

Next, tThe influence of the ACPW-CNOP on the simulated typhoon track also is analysedanalyzed. The tracks are drawn in 5 

Figures 10 and 11, and position data also is list in Tables 6 and 7. For typhoon Fitow, four sub-figures of the Figure 10 are 

the same, because the different ACPW-CNOPs have the same influence on the simulated typhoon tracks.  

For typhoon Matmo, there are two same sub-figures, i.e. Figure 11 (b) and (c), and two different sub-figures, i.e. Figure 11 (a) 

and (d). And the different position is the initial position at 1800 UTC 21 Jul and the end position at 1800 UTC 22 Jul. 

Moreover, the difference of data is little. 10 

Comparing the effects of ADJ-CNOP and ACPW-CNOP on typhoon track simulation, it is found that for Fitow case, the two 

CNOPs have the similar effect on typhoon track, . while While for Matmo case, the influence of ACPW-CNOP is less than 

that of ADJ-CNOP. The typhoon track generated by adding ACPW-CNOP is very close to that simulated track of the WRF-

ARW model (Figure 2 (b)), but much closer to the observed typhoon track. 

4.5.2 Simulated track analysis of adding CNOP modified in the sensitive regions of TTOs 15 

After reducing CNOPs in the sensitive regions of TTOs identified by ADJ-methodADJ method and ACPW, the typhoon 

tracks are shown showed in Figures 12 and 13, which are simulated by the WRF-ARW model with adding modified CNOPs 

to the initial state. The strategy of reducing CNOP is change the values to 0.5 time only in the sensitive regions. The tracks 

position data can be seen in Tables 7 and 8. 

The analysis results of Figure 10 and Figure 11 are consistent with those above, that is, iIn Fitow case, the sensitive regions 20 

identified by ACPW-CNOP and ADJ-CNOP have the similar influence on typhoon track simulation; in Matmo case, the 

sensitive regions identified by ACPW-CNOP have less influence than ADJ-CNOP, but when adding the observations in the 

sensitive regions, i.e. reducing the CNOP values in the sensitive regions, the simulated tracks are better than those simulated 

by the WRF-ARW model (Figure 2 (b)). 

In conclusion, the sensitive regions identified by the ACPW-CNOP has the similar influence with the ADJ-CNOP on the 25 

simulation of typhoon tracks, sometimes the ACPW-CNOP has more positive impact on the simulation of typhoon tracks. 

5 Summaries and Conclusions 

In this paper, we rewrite the ACPW and applied it to solve CNOP in the WRF-ARW for identifying sensitive areas of TTOs, 

which is proposed by us in the study of Zhang et al. (2018), to investigate its feasibility and effectiveness in the WRF-ARW 

model. We take two typhoons as study cases, Fitow (2013) and Matmo (2014), and simulate them with the 60 km60-km 30 

horizontal resolution. Similar to our previous study (Zhang et al., 2018), tThe total dry energy is adopted as the objective 
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function. The CNOP is also calculated by the ADJ-methodADJ method as the benchmark. To evaluate the ACPW-CNOP, 

five aspects are analysed, such as the pattern, energy, similarity, benefits from the CNOPs reduced in the whole domain and 

the sensitive regions identified, and the simulated typhoon tracks. 

Based on the experimental results, the following conclusions can be drawn: 

(1) The temperature and wind patterns of ACPW-CNOP is similar to those of the ADJ-CNOP in all typhoons. The 5 

distribution of temperature zones and the direction of wind vector is almost the same. Except for the CNOP patterns of 

ACPW are more dispersed and fragmented than those of ADJ-methodADJ method. 

(2) The similarity values of ADJ-CNOP and ACPW-CNOP of two typhoon cases are more than 0.5. The Fitow is 0.61, and 

the Matmo is 0.53. 

(3) When reducing CNOPs in the whole domain, the forecasting benefits of ACPW-CNOP is greater than that of ADJ-10 

CNOP in typhoon Fitow, while the result is opposite in typhoon Matmo. When reducing CNOPs in the sensitive regions, the 

forecast incomebenefit of ACPW-CNOP is greater than that of ADJ-CNOP in all typhoons. 

(4) When ACPW uses the parameters in line 1 of Table 6 and the ADJ-methodADJ method uses one first guess field, the 

speedup of the ACPW is 2.59. If the ADJ-methodADJ method uses four first guess fields, the speedup of the ACPW is 10.34. 

In the experiments of this paper, tThe ACPW is more efficient than the ADJ-methodADJ method in this paper. 15 

(5) The sensitive regions identified by the ACPW-CNOP has the similar influence with the ADJ-CNOP on the simulation of 

typhoon tracks, sometimes the ACPW-CNOP has more positive impact on the simulation of typhoon tracks. 

Overall, the feasibility and effectiveness of ACPW is proved in the WRF-ARW model. 

To comparedcompare with the ADJ-methodADJ method, it is limited when we construct the physical parameterization 

schemes of WRF-ARW. Because the corresponding adjoint model only provides one physical parameterization scheme. And 20 

that may be the reason of bad simulated Fitow typhoon track. Since the ACPW method is free of the adjoint model, we will 

try more complicated physical parameterization schemes and improve the horizontal resolution to do such research. 

Moreover, ACPW can be used to solve CNOP in the numerical models no having adjoint model, such as GFDL 

(Geophysical Fluid Dynamics Laboratory) and CESM (Community Earth System Model). 

 25 
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Figure 1: The schematic diagram of verification region. The red square represents the verification region, m is the number of 

meridional grids and n is the number of zonal grids in horizontal grids. 

 

 5 

Figure 2: Simulated tracks of WRF-ARW model and typhoon observed tracks of CMA. Solid circles represent typhoon observed 

tracks of CMA, hollow circles show simulated tracks. (a) Fitow from 0000 UTC 5 Oct to 0000 UTC 6 Oct 2013. (b) Matmo from 

1800 UTC 21 Jul to 1800 UTC 22 Jul 214.  
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Figure 3: The CNOP patterns of Fitow at 𝜼 = 𝟎. 𝟕. The shaded parts represent the temperature (units: K) and the vectors describe 

the wind (units: ms-1). The squares draw the verification areas. (a) denotes the CNOP pattern of the ADJ-methodADJ method and 

(b) presents the ACPW. 

 5 
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Figure 4: The CNOP patterns of Matmo at 𝜼 = 𝟎. 𝟕. The shaded parts represent the temperature (units: K) and the vectors 

describe the wind (units: ms-1). The squares draw the verification areas. (a) denotes the CNOP pattern of the ADJ-methodADJ 

method and (b) presents the ACPW. 

 

Figure 5: Same as Figure 3, but the shaded parts represent the vertically integrated energies for Fitow (units: J kg-1), and the 5 

black virtual box represents the validation area.  
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Figure 6: Same as Figure 4, but the shaded parts represent the vertically integrated energies for Fitow (units: J kg-1), and the 

black virtual box represents the validation area. 

 

Figure 7: Benefits (percent, %) achieved by reducing CNOPs to W×CNOPs of ADJ and ACPW methods in the whole domain for 5 

typhoon Fitow (2013). The x-coordinate is the W coefficient values. And the y-coordinate denotes the benefits (percent, %) derived 

from the two methods. ADJ-methodADJ method is described as black line with squares and ACPW is red line with circles. 
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Figure 8: Simulated typhoon tracks of WRF-ARW with adding ADJ-CNOP or W×ADJ-CNOP into the initial state in the whole 

domain for Fitow. Solid circles represent observed tracks of CMA, and hollow circles show the simulated tracks of the WRF-ARW 

model. (a), (b), (c) and (d) denote CNOP, 0.75×CNOP, 0.5×CNOP and 0.25×CNOP, respectively. 
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Figure 9: Simulated typhoon tracks of WRF-ARW with adding ADJ-CNOP or W×ADJ-CNOP into the initial state in the whole 

domain for Matmo. Solid circles represent observed tracks of CMA, and hollow circles show the simulated tracks of the WRF-

ARW model. (a), (b), (c) and (d) denote CNOP, 0.75×CNOP, 0.5×CNOP and 0.25×CNOP, respectively. 
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Figure 10: Simulated typhoon tracks of WRF-ARW with adding ACPW-CNOP or W×ACPW-CNOP into the initial state in the 

whole domain for Fitow. Solid circles represent observed tracks of CMA, and hollow circles show the simulated tracks of the 

WRF-ARW model. (a), (b), (c) and (d) denote CNOP, 0.75×CNOP, 0.5×CNOP and 0.25×CNOP, respectively. 
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Figure 11: Simulated typhoon tracks of WRF-ARW with adding ACPW-CNOP or W×ACPW-CNOP into the initial state in the 

whole domain for Matmo. Solid circles represent observed tracks of CMA, and hollow circles show the simulated tracks of the 

WRF-ARW model. (a), (b), (c) and (d) denote CNOP, 0.75×CNOP, 0.5×CNOP and 0.25×CNOP, respectively. 

 5 

Figure 12: Simulated Fitow tracks of the WRF-ARW with adding modified CNOPs into the initial state. Solid circles represent 

observed typhoon tracks of CMA, and hollow circles show the simulated typhoon tracks of the WRF-ARW model. (a) is from 

ADJ-methodADJ method and (b) is ACPW method. 
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Figure 13: Simulated Matmo tracks of the WRF-ARW with adding modified CNOPs into the initial state. Solid circles represent 

observed typhoon tracks of CMA, and hollow circles show the simulated typhoon tracks of the WRF-ARW model. (a) is from 

ADJ-methodADJ method and (b) is ACPW method. 

  5 
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Table 1: The pseudocode of ACPW. 

Algorithm. ACPW 

Initialization: 

1: Set the parameters of ACPW in Table 2. 

ACPW: 

2: Randomly generate an initial perturbation swarm 𝑃0 = {𝑋1
𝑛′，𝑋2

𝑛′, ⋯ , 𝑋𝑁
𝑛′ } , where 

𝑋𝑛′ = {𝑥1 , 𝑥2, ⋯ , 𝑥𝑛′}, 𝑥𝑖 ∈ [−1,1], 𝑖 = [1, 𝑛′] , and 𝑛′  is the number of principal components 

selected; 

3: According to the adaptive coefficient α , divide the entire initial swarm 𝑃0  into two 

subswarms 𝑃0
1 = {𝑋1

𝑛′，𝑋2
𝑛′, ⋯ , 𝑋𝑁∙𝛼

𝑛′ } and 𝑃0
2 = {𝑋𝑁−𝑁∙𝛼

𝑛′，𝑋𝑁−𝑁∙𝛼+1
𝑛′, ⋯ , 𝑋𝑁

𝑛′ }; 

4: WHILE 𝑡 < 𝑇𝑜𝑡𝑎𝑙_𝑆𝑡𝑒𝑝 DO; 

5:         𝑃𝑟𝑜𝑗𝑒𝑐𝑡(𝑋𝑡
𝑛′

, ζ)；Pull back the individual when it goes beyond the boundary, i.e., 

when ‖𝑥𝑖‖ > 𝜁, then 𝑥𝑖 =
𝜁

‖𝑥𝑖‖
× 𝑥𝑖, ζ is the constrain condition in the formula (1); 

6:        𝐴𝑑𝑎𝑝𝑡𝐹𝑢𝑛(𝑃𝑖)；Calculate the adaptive value of the objective function parallelly, i.e., 

J(𝑥𝑖) in Eq. (1).  

7:         Compare the values of the objective function of all individuals and save the best one; 

8:         Calculate the difference of the best objective function values of generations 𝑃𝑡 and 

𝑃𝑡−1,  

          If the difference is smaller than the threshold value ε, then 

change the adaptive coefficient α to α + 0.05,  

                     Else 

                            change the adaptive coefficient α to α − 0.05, 

                     End if 

    9:        Calculate the number of two subswarms by the new adaptive coefficient α; 

10:      Update the individuals of   𝑃𝑡
1 as the PSO rules; 

 

11:      Update the individuals of 𝑃𝑡
2 as the WSA rules; 

 

12: END WHILE  

Output: CNOP 

Table 2: The control parameters of ACPW. 

Name Meaning Value 
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𝑛′ Number of principle components in Table 6 

N Number of individuals in Table 6 

a Adaptive coefficient Initial: 0.5 

ω Inertia coefficient 0.8 

c1 Self-awareness to track the historically optimal position 2.05 

c2 
Social-awareness of the particle swarm to track the globally 

optimal position 
2.05 

ϒ Restraint factor to control the speed 0.729 

θ Velocity of individual moving 0.5 

r Local optimizing radius 
8×δ/original 

dimensions 

s Step size of updating individual 0.6 

pa Probability of individual escaping from current position 0.3 

Total_Step The number of iterations in Table 6 

Table 3: The meanings of all symbols 

Symbols Values/ components Meanings 

𝜁𝜑0 𝑢0
′ , 𝑣0

′ , 𝑇0
′, 𝑝𝑠0

′ , Initial perturbation 

𝜑𝑁𝑇  𝑢𝑡
′ , 𝑣𝑡

′, 𝑇𝑡
′, 𝑝𝑠𝑡

′  
Nonlinear evolution of 

perturbed 𝛷0 at time t 

𝐷 Values rely on cases Verification area 

𝜂 (0, 1] Vertical coordinate 

𝑐𝑝 1005.7 J kg−1 K−1 
Specific heat at  

constant pressure 

𝑅𝑎 287.04 J kg−1K−1 Gas constant of dry air 

𝑇𝑟 270K Constant parameter 

𝑝𝑟 1000hPa Constant parameter 

Table: 4 The numerical similarity between ACPW-CNOP and ADJ-CNOP 

ACPW&ADJ similarity 

Fitow 0.61 

Matmo 0.53 

Table 5: Benefits (percent, %) achieved by reducing CNOPs in the sensitive regions. 

Case Method 0.75 0.5 0.25 

Fitow ADJ 6.9169%  6.9699% 6.669%   
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ACPW 10.2871%  9.6823%  8.812%  

Matmo ADJ 0.0809% 0.083% 0.0779% 

ACPW 2.3484% 3.5716% 5.2212% 

Table 6: the running timetime consumption of ACPW for solving CNOP in the WRF-ARW model. 

𝒏′ 𝑵 Total_Step Time 

(units: minutes) 

The adaptive value of 

objective function 

30 20 10 89.83 28126.185933 

30 40 10 179.55 27125.406996 

30 60 10 269.33 26708.582565 

30 40 20 359.79 30421.490441 

40 30 10 136.77 24525.656206 

40 40 20 360.43 31055.582842 

50 30 10 136.89 17137.857070 

60 30 10 137.23 14285.603508 

Table 7: The Fitow tracks of adding different CNOPs with the WRF-ARW model. The red number represents the different 

position at the same time point. 

Method/Fitow 

(2013) 

Time CNOP 0.75CNOP 0.5CNOP 0.25CNOP 0.5Sens 

ADJ 0000 UTC 5 

Oct 

127.618 

23.5222 

127.652 

24.0799 

127.652 

24.0799 

127.652 

24.0799 

127.652 

24.0799 

0600 UTC 5 

Oct 

126.43 

24.1385 

126.43 

24.1385 

126.43 

24.1385 

126.43 

24.1385 

126.43 

24.1385 

1200 UTC 5 

Oct 

125.207 

24.187 

125.819 

24.1641 

125.819 

24.1641 

125.819 

24.1641 

125.819 

24.1641 

1800 UTC 5 

Oct 

124.574 

23.6492 

124.574 

23.6492 

124.574 

23.6492 

124.595 

24.2075 

124.595 

24.2075 

0000 UTC 6 

Oct 

125.874 

21.1697 

125.874 

21.1697 

125.874 

21.1697 

125.874 

21.1697 

125.874 

21.1697 

ACPW 0000 UTC 5 

Oct 

127.652 

24.0799 

127.652 

24.0799 

127.652 

24.0799 

127.652 

24.0799 

127.652 

24.0799 

0600 UTC 5 

Oct 

126.43 

24.1385 

126.43 

24.1385 

126.43 

24.1385 

126.43 

24.1385 

126.43 

24.1385 

1200 UTC 5 125.819 125.819 125.819 125.819 125.819 
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Oct 24.1641 24.1641 24.1641 24.1641 24.1641 

1800 UTC 5 

Oct 

124.595 

24.2075 

124.595 

24.2075 

124.595 

24.2075 

124.595 

24.2075 

124.574 

23.6492 

0000 UTC 6 

Oct 

125.874 

21.1697 

125.874 

21.1697 

125.874 

21.1697 

125.874 

21.1697 

125.874 

21.1697 

Table 8: The Matmo tracks of adding different ADJ-CNOPs with the WRF-ARW model. The red number represents the different 

position at the same time point. 

Method/Matmo 

(2014) 
Time CNOP 0.75CNOP 0.5CNOP 0.25CNOP 0.5Sens 

ADJ 
1800 UTC 

21 Jul 

124.413 

19.193 

124.413 

19.193 

124.413 

19.193 

124.413 

19.193 

124.413 

19.193 

0000 UTC 

22 Jul 

123.876 

20.8786 

123.876 

20.8786 

123.876 

20.8786 

123.876 

20.8786 

123.876 

20.8786 

0600 UTC 

22 Jul 

122.696 

21.4631 

122.696 

21.4631 

123.31 

22.0081 

123.31 

22.0081 

122.696 

21.4631 

1200 UTC 

22 Jul 

122.708 

22.0207 

122.708 

22.0207 

122.72 

22.5785 

122.72 

22.5785 

122.708 

22.0207 

1800 UTC 

22 Jul 

122.72 

22.5785 

122.733 

23.1367 

122.733 

23.13 

122.745 

23.695 

122.72 

22.5785 

ACPW 
1800 UTC 

21 Jul 

124.433 

19.7486 

124.433 

19.7486 

124.433 

19.7486 

124.413 

19.193 

124.433 

19.7486 

0000 UTC 

22 Jul 

123.876 

20.8786 

123.876 

20.8786 

123.876 

20.8786 

123.876 

20.8786 

123.876 

20.8786 

0600 UTC 

22 Jul 

123.31 

22.0081 

123.31 

22.0081 

123.31 

22.0081 

123.31 

22.0081 

123.31 

22.0081 

1200 UTC 

22 Jul 

122.72 

22.5785 

122.72 

22.5785 

122.72 

22.5785 

122.72 

22.5785 

122.72 

22.5785 

1800 UTC 

22 Jul 

122.125 

23.1468 

122.135 

23.7051 

122.135 

23.7051 

122.135 

23.7051 

122.125 

23.1468 

 


