Interactive comment on “CNOP based on ACPW for Identifying Sensitive Regions of Typhoon Target Observations with WRF Model” by Bin Mu et al.

Anonymous Referee #3
Received and published: 1 July 2019

Review of "CNOP based on ACPW for identifying... WF model by Mu et al."

The paper describes an algorithm –ACPW– to compute conditional nonlinear optimal perturbation –CNOP– using the WRF–ARW model to identify sensitive areas of typhoon-target observations. The authors apply it to two cases –Filow and Matmo. Results are based on maximizing the total dry energy. They then compare their results with those obtained using the adjoint model algorithm.

The authors conclude that the ACPW provides overall better results than the adjoint algorithm, particularly in the sensitive regions, and is more efficient.

Recommendation

Reject and resubmit.

Although the idea put forward in the paper is good the writing really needs attention. Besides, I find that the notation related to the equations is not proper.

I was caught between major revision and reject/resubmit. But it seems that the paper needs major rewriting and also need to be checked by a native speaker.

Major concern

Equations and notation

Starting with the line 10, pg3, – a perturbation of a quantity φ is conventionally noted $\delta \varphi$ (like φ'), where δ is understood to be an operator. The notation $\zeta \varphi_0$ is misused in addition, $\delta \varphi_0$ of φ_0 not φ_0.

Also requiring $||\varphi_0||^2 \leq \zeta$? ζ is an operator in the text and now it is like a number.

The costfunction J is introduced in top of pg 3, but only explained and detailed 2 pages later?

P: projection operator – what kind of projection, and on which space?

Ψ_i (should be φ_i for consistency) is not an operator – it is the state of the system.
Content

1. Above all, it is not clear what is the main difference with Zhang et al. (2108) what is the advantage of the new algorithm. Any concrete results?

2. The authors use PCs to reduce the problem dimension. It is not clear how they are obtained: PCs of what, and what is the sample size used to get these PCs the authors using the 24-hr data with 6-hr sampling?

3. Not clear how is the sensitive region determined as CNOP only identifies perturbations. Are the authors computing the cost function for different regions then compare them?