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In this supplementary note, we detail the computations that lead to the main Section 2 results.

I. ORNSTEIN-UHLENBECK PROCESSES AS A FORECAST MODEL CHANGE

We consider two Ornstein-Uhlenbeck processes supposedly representing the reality x(τ) and its forecast model y(τ)
obeying the following equations:

ẋ = −λx x+Kx +Qx ξx(τ) (S1)

ẏ = −λy y +Ky +Qy ξy(τ) (S2)

where ξx and ξy are white noise processes such that

〈ξx(τ)〉 = 〈ξy(τ)〉 = 0

〈ξx(τ) ξx(τ ′)〉 = δ(τ − τ ′)
〈ξy(τ) ξy(τ ′)〉 = δ(τ − τ ′)
〈ξx(τ) ξy(τ ′)〉 = 0

These dynamics are thus uncorrelated Ornstein-Uhlenbeck processes with noise amplitudes Qx and Qy.

A change of the model y(τ) toward a model ŷ(τ) is then considered, possibly improving or degrading the forecast
performances:

˙̂y = −λy ŷ +Ky +Qy ξy(τ) + Ψy(τ) (S3)

where

Ψy(τ) = −κ
(
δK + δQ ξy(τ)

)
(S4)

with δK = Ky − Kx and δQ = Qy − Qx. It can represent for example a better parameterization of subgrid-scale
processes. Note that if κ = 1, the correction is perfect.

A post-processing scheme constructed before the model change, and then applied after it, would give a deteriorated
correction. Therefore, a post-processing scheme is in general recomputed after such a change. The object of the present
note is to show that response theory can correct the prior post-processing scheme and gives thus an approximation
to the one computed after the change. Moreover, in the present case involving Ornstein-Uhlenbeck processes, this
correction is exact. First, this post-processing scheme is described.

A. The post-processing of x

We consider an EVMOS [4] post-processing of the variable x :

xC(τ) = α(τ) + β(τ) · y(τ) (S5)

The coefficient α and β are given by the equations:

α(τ) = 〈x(τ)〉 − β(τ) · 〈y(τ)〉 (S6)

β(τ) =

√
σ2
x(τ)

σ2
y(τ)

(S7)



with

σ2
x(τ) =

〈(
x(τ)− 〈x(τ)〉

)2〉
(S8)

σ2
y(τ) =

〈(
y(τ)− 〈y(τ)〉

)2〉
(S9)

where the average is taken over initial conditions of the x process. Indeed, both the forecast models y and ŷ are
initialized with the initial conditions of x. The corrected quantity xC depends thus on the lead time τ .

B. Post-processing before and after the model change

Before the model change, Ψy(τ) = 0, and a direct computation gives:

〈x(τ)〉 = 〈x(0)〉 e−λx τ +
Kx

λx

(
1− e−λx τ

)
(S10)

〈y(τ)〉 = 〈x(0)〉 e−λy τ +
Ky

λy

(
1− e−λy τ

)
(S11)

and

σ2
x(τ) = σ2

x(0) e−2λx τ +
Q2
x

2λx

(
1− e−2λxτ

)
(S12)

σ2
y(τ) = σ2

x(0) e−2λy τ +
Q2
y

2λy

(
1− e−2λyτ

)
(S13)

since the model is initialized with the same initial conditions as the reality:

〈y(0)〉 = 〈x(0)〉 , σ2
y(0) = σ2

x(0) . (S14)

These equations allow us to compute the post-processing coefficients at every lead time τ :

α(τ) = 〈x(τ)〉 − β(τ) 〈y(τ)〉 (S15)

β(τ) =

√
σ2
x(τ)

σ2
y(τ)

(S16)

It is easy to extend these results when model change Ψ is incorporated:

〈ŷ(τ)〉 = 〈x(0)〉 e−λy τ +
Ky − κ δK

λy

(
1− e−λy τ

)
(S17)

and

σ2
ŷ(τ) = σ2

x(0) e−2λy τ +
(Qy − κ δQ)2

2λy

(
1− e−2λyτ

)
(S18)

with

α̂(τ) = 〈x(τ)〉 − β̂(τ) 〈ŷ(τ)〉 (S19)

β̂(τ) =

√
σ2
x(τ)

σ2
ŷ(τ)

(S20)

The variation of the moments of the dynamics are then

〈ŷ(τ)〉 = 〈y(τ)〉 − κ δK

λy

(
1− e−λy τ

)
(S21)

σ2
ŷ(τ) = σ2

y(τ) +
1

2λy

(
κ2δQ2 − 2κQy δQ

) (
1− e−2λyτ

)
(S22)

and it implies the following variation of the bias α:

δα(τ) = α̂(τ)− α(τ) = β(τ) 〈y(τ)〉 − β̂(τ) 〈ŷ(τ)〉 (S23)
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The ratio between the biases β is given by

β̂(τ)

β(τ)
=

√
σ2
y(τ)

σ2
ŷ(τ)

(S24)

For τ � max(1/λx, 1/λy), we note that this ratio tend to

β̂(τ)

β(τ)
=

1

1− κ δQ/Qy
(S25)

and the asymptotic limit for the variation of α is given by

δα(τ) = −β(τ)
Ky

λy

[
1− κ δK/Ky

1− κ δQ/Qy
− 1

]
. (S26)

C. (Non-Stationary) Response theory

The post-processing problem is typically a non-stationary initial value problem, since the initial conditions of the
model equations (S2) and (S3) are typically chosen close to the reality (S1). As a consequence, the model actual
averages relax toward the stationary response in the long-time limit, but the stationary response theory [3, 5] cannot
provide us the short-time relaxation behaviors. We thus consider the short-time evolution of the averages. Therefore,
the Ruelle time-dependent response theory should be used [2].

After the model change, the model is ruled by Eq. (S3):

˙̂y = −λy ŷ +Ky +Qy ξy(τ) + Ψy(τ) (S27)

with

Ψy(τ) = −κ
(
δK + δQ ξy(τ)

)
(S28)

Given an observable A, its average after the model change can then be related to it’s average before by

〈A(τ)〉ŷ = 〈A(τ)〉y + δ〈A(τ)〉y + δ2〈A(τ)〉y + . . . (S29)

If the perturbations (S28) is small, then the response theory states that the first order is given by:

δ〈A(τ)〉y =

∫ τ

0

dτ ′
∫

dy ρy,0(y)
〈

Ψy(τ ′) · ∇fτ′ (y)A (fτ (y))
〉

(S30)

where ρy,0 is the initial distribution with which the model is initialized. As indicated by Eq. (S14), in the post-
processing framework, it is typically taken as the initial distribution of the reality ρx,0. We have also 〈·〉 which denotes
the average over the realization of the stochastic process [1], and also the mapping fτ is the stochastic “flow” of the
unperturbed system (S2):

fτ (y) = y e−λyτ +

∫ τ

0

dτ ′ e−λy(τ−τ ′)
[
Qy ξy(τ ′) +Ky

]
(S31)

1. First order

a. First moment: First the response for the shift of the mean of y(τ) due to the perturbation is evaluated:

δ〈y(τ)〉 = −κ
∫ τ

0

dτ ′
∫

dy ρy,0(y)
〈[
δK + δQ ξy(τ ′)

]
· ∇fτ′ (y) f

τ (y)
〉

(S32)

With

∇fτ′ (y) f
τ (y) = ∇fτ′ (y) f

τ−τ ′
◦ fτ

′
(y) = e−λy(τ−τ ′) , (S33)
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∫
dy ρy,0(y) = 1 , (S34)

and 〈ξy(τ ′)〉 = 0 for all τ ′, we get:

δ〈y(τ)〉 = −κ
∫ τ

0

dτ ′δK e−λy(τ−τ ′) (S35)

and thus:

〈ŷ(τ)〉 = 〈y(τ)〉 − κ

λy
δK

(
1− e−λyτ

)
(S36)

and the exact relation (S21) is recovered.
b. Second moment: We now turn to the computation of

δ〈y(τ)2〉 = −κ
∫ τ

0

dτ ′
∫

dy ρy,0(y)
〈[
δK + δQ ξy(τ ′)

]
· ∇fτ′ (y) (fτ (y))

2
〉

(S37)

= −κ
∫ τ

0

dτ ′
∫

dy ρy,0(y)
〈[
δK + δQ ξy(τ ′)

]
· ∇fτ′ (y) f

τ (y) · ∇fτ (y) (fτ (y))
2
〉

(S38)

= −2κ

∫ τ

0

dτ ′
∫

dy ρy,0(y)
〈[
δK + δQ ξy(τ ′)

]
· fτ (y) · ∇fτ′ (y) f

τ (y)
〉

(S39)

which gives, using the formula (S31):

δ〈y(τ)2〉 = −2κ δK

∫ τ

0

dτ ′
∫

dy ρy,0(y)

[
y e−λyτ e−λy(τ−τ ′) +

Ky

λy
e−λy(τ−τ ′)

(
1− e−λyτ

)]
−2κQy δQ

〈∫ τ

0

dτ ′ e−λy(τ−τ ′) ξy(τ ′)

∫ τ

0

dτ ′′ e−λy(τ−τ ′′) ξy(τ ′′)

〉
(S40)

= −2κ δK

[
1

λy
〈y(0)〉 e−λyτ

(
1− e−λyτ

)
+
Ky

λ2
y

(
1− e−λyτ

)2]
−2κ δQQy

∫ τ

0

dτ ′ e−2λy(τ−τ ′) (S41)

where we have used 〈ξy(τ) ξy(τ ′)〉 = δ(τ − τ ′). Therefore, we finally get:

δt〈y(τ)2〉 = −2κ
δK

λy
〈y(τ)〉

(
1− e−λyτ

)
− κ

λy
δQQy

(
1− e−2λyτ

)
(S42)

which gives

σ2
y,Ψ(τ) ≈ 〈y(τ)2〉+ δ〈y(τ)2〉 − (〈y(τ)〉+ δ〈y(τ)〉)2

= σ2
y(τ) + δ〈y(τ)2〉 − 2〈y(τ)〉 δ〈y(τ)〉 − (δ〈y(τ)〉)2

= σ2
y(τ)− 2κ

δK

λy
〈y(τ)〉

(
1− e−λyτ

)
− κ

λy
δQQy

(
1− e−2λyτ

)
+2〈y(τ)〉0

κ

λy
δK

(
1− e−λyτ

)
− κ2

λ2
y

δK2
(
1− e−λyτ

)2
(S43)

= σ2
y(τ)− κ

λy
δQQy

(
1− e−2λyτ

)
− κ2

λ2
y

δK2
(
1− e−λyτ

)2
(S44)

which does not match Eq. (S22) and thus the second order terms should be computed.

2. Second order

The second order response for an observable A is given by:

δ2〈A(τ)〉 =

∫ τ

0

dτ ′
∫ τ

τ ′
dτ ′′

∫
dy ρy,0(y)

〈
Ψx(τ ′) · ∇fτ′ (y)Ψy(τ ′′) · ∇fτ′′ (y)A (fτ (y))

〉
(S45)
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Since here the perturbations do not depend on the state variable y

δ2〈A(τ)〉 =

∫ τ

0

dτ ′
∫ τ

τ ′
dτ ′′

∫
dy ρy,0(y)

〈
Ψx(τ ′)Ψy(τ ′′)∇fτ′ (y)∇fτ′′ (y)A (fτ (y))

〉
(S46)

and applied to the first moment of the y(τ) dynamics, it leads to

δ2〈y(τ)〉 = 0 (S47)

since thanks to the Eq. (S33)

∇fτ′ (y)∇fτ′′ (y)f
τ (y) = 0 . (S48)

The computation of the derivatives for the second moments leads to

∇fτ′ (y)∇fτ′′ (y) (fτ (y))
2

= 2∇fτ′ (y) f
τ (y)∇fτ′′ (y) f

τ (y)

= 2 e−λy(τ−τ ′) e−λy(τ−τ ′′) , (S49)

and thus the correction to the second moment of y(τ) can be obtained by computing

δ2〈y(τ)2〉 = 2κ2

∫ τ

0

dτ ′
∫ τ

τ ′
dτ ′′

〈(
δK + δQ ξy(τ ′)

)
e−λy(τ−τ ′)

(
δK + δQ ξy(τ ′′)

)
e−λy(τ−τ ′′)

〉
(S50)

which thanks to the averaging properties of ξy gives

δ2〈y(τ)2〉 = κ2 δK2

[∫ τ

0

dτ ′ e−λy(τ−τ ′)

]2

+ 2κ2 δQ2

∫ τ

0

dτ ′
∫ τ

τ ′
dτ ′′

〈
ξy(τ ′)

)
e−λy(τ−τ ′) ξy(τ ′′) e−λy(τ−τ ′′)

〉
= κ2 δK2

[∫ τ

0

dτ ′ e−λy(τ−τ ′)

]2

+ κ2 δQ2

∫ τ

0

dτ ′ e−2λy(τ−τ ′) (S51)

=
κ2 δK2

λ2
y

(
1− e−λyτ

)2
+
κ2 δQ2

2λy

(
1− e−2λyτ

)
(S52)

3. Final result

By aggregating the two orders, we get:

〈y(τ)〉ŷ ≈ 〈y(τ)〉+ δ〈y(τ)〉 = 〈y(τ)〉 − κ

λy
δK

(
1− e−λyτ

)
(S53)

σ2
ŷ(τ) ≈ σ2

y(τ)− κ

λy
δQQy

(
1− e−2λyτ

)
− κ2

λ2
y

δK2
(
1− e−λyτ

)2
+
κ2 δK2

λ2
y

(
1− e−λyτ

)2
+
κ2 δQ2

2λy

(
1− e−2λyτ

)
(S54)

= σ2
y(τ)− κ

λy
δQQy

(
1− e−2λyτ

)
+
κ2 δQ2

2λy

(
1− e−2λyτ

)
(S55)

These approximations are in fact exact for any time τ , even for the transient short-time τ < 1/λy and gives back the
post-processing results of the section I B of the present note.
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